Menu Close

calculate-0-1-e-x-1-x-dx-




Question Number 47182 by maxmathsup by imad last updated on 05/Nov/18
calculate ∫_0 ^1  e^(−x) (√(1−(√x)))dx
calculate01ex1xdx
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Nov/18
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Nov/18
graph of e^(−x) (√(1−(√x) ))  0.50 >∫_0 ^1 e^(−x) (√(1−(√x)))  dx>0
graphofex1x0.50>01ex1xdx>0
Commented by maxmathsup by imad last updated on 11/Nov/18
let determine a approximat value of A =∫_0 ^1  e^(−x) (√(1−(√x)))dx we have  e^u =1+(u/(1!)) +(u^2 /(2!)) +....⇒e^(−x) =1−x +(x^2 /2) −...⇒0≤ e^(−x) ≤1−x+(x^2 /2) ⇒  0≤e^(−x) (√(1−(√x)))≤(1−x+(x^2 /2))(√(1−(√x))) ⇒0≤ ∫_0 ^1  e^(−x) (√(1−(√x)))dx≤∫_0 ^1 (1−x+(x^2 /2))(√(1−(√x)))dx  changement (√(1−(√x)))=t give 1−(√x)=t^2  ⇒(√x)=1−t^2  ⇒x=(1−t^2 )^2 =t^4 −2t^2  +1 ⇒  ∫_0 ^1 (1−x+(x^2 /2))(√(1−(√x)))dx=−∫_0 ^1 (1−t^4 +2t^2 −1 +(((t^4 −2t^2 +1)^2 )/2))t(4t^3 −4t)dt  =−2 ∫_0 ^1 (−2t^4  +4t^2  +( t^8 +4t^4  +1 +2(−2t^6  +t^4 −2t^2 )(t^4 −t^2 )dt  =−2 ∫_0 ^1 (−2t^4  +4t^2  +t^8  +6t^4  −4t^6 −4t^2  +1)(t^4 −t^2 )dt  =−2 ∫_0 ^1 (t^8 −4t^6 −2t^4 −4t^2 +1)(t^4 −t^2 )dt  =−2 ∫_0 ^1 ( t^(12) −t^(10) −4t^(10)  +4t^8  −2t^8  +2t^6 −4t^6  +4t^4 )dt  =−2 ∫_0 ^1 (t^(12) −5t^(10)  +2t^8  −2t^6  +4t^4 )dt  =−2[(t^(13) /(13)) −((5t^(11) )/(11)) +((2t^9 )/9) −((2t^7 )/7) +((4t^5 )/5)]_0 ^1   =−2( (1/(13)) −(5/(11)) +(2/9) −(2/7) +(4/5))=−(2/(13)) +((10)/(11)) −(4/9) +(4/7) −(8/5) =α_0  ⇒0< A≤α_0
letdetermineaapproximatvalueofA=01ex1xdxwehaveeu=1+u1!+u22!+.ex=1x+x220ex1x+x220ex1x(1x+x22)1x001ex1xdx01(1x+x22)1xdxchangement1x=tgive1x=t2x=1t2x=(1t2)2=t42t2+101(1x+x22)1xdx=01(1t4+2t21+(t42t2+1)22)t(4t34t)dt=201(2t4+4t2+(t8+4t4+1+2(2t6+t42t2)(t4t2)dt=201(2t4+4t2+t8+6t44t64t2+1)(t4t2)dt=201(t84t62t44t2+1)(t4t2)dt=201(t12t104t10+4t82t8+2t64t6+4t4)dt=201(t125t10+2t82t6+4t4)dt=2[t13135t1111+2t992t77+4t55]01=2(113511+2927+45)=213+101149+4785=α00<Aα0

Leave a Reply

Your email address will not be published. Required fields are marked *