Question Number 47182 by maxmathsup by imad last updated on 05/Nov/18

Commented by tanmay.chaudhury50@gmail.com last updated on 07/Nov/18

Commented by tanmay.chaudhury50@gmail.com last updated on 07/Nov/18

Commented by maxmathsup by imad last updated on 11/Nov/18
![let determine a approximat value of A =∫_0 ^1 e^(−x) (√(1−(√x)))dx we have e^u =1+(u/(1!)) +(u^2 /(2!)) +....⇒e^(−x) =1−x +(x^2 /2) −...⇒0≤ e^(−x) ≤1−x+(x^2 /2) ⇒ 0≤e^(−x) (√(1−(√x)))≤(1−x+(x^2 /2))(√(1−(√x))) ⇒0≤ ∫_0 ^1 e^(−x) (√(1−(√x)))dx≤∫_0 ^1 (1−x+(x^2 /2))(√(1−(√x)))dx changement (√(1−(√x)))=t give 1−(√x)=t^2 ⇒(√x)=1−t^2 ⇒x=(1−t^2 )^2 =t^4 −2t^2 +1 ⇒ ∫_0 ^1 (1−x+(x^2 /2))(√(1−(√x)))dx=−∫_0 ^1 (1−t^4 +2t^2 −1 +(((t^4 −2t^2 +1)^2 )/2))t(4t^3 −4t)dt =−2 ∫_0 ^1 (−2t^4 +4t^2 +( t^8 +4t^4 +1 +2(−2t^6 +t^4 −2t^2 )(t^4 −t^2 )dt =−2 ∫_0 ^1 (−2t^4 +4t^2 +t^8 +6t^4 −4t^6 −4t^2 +1)(t^4 −t^2 )dt =−2 ∫_0 ^1 (t^8 −4t^6 −2t^4 −4t^2 +1)(t^4 −t^2 )dt =−2 ∫_0 ^1 ( t^(12) −t^(10) −4t^(10) +4t^8 −2t^8 +2t^6 −4t^6 +4t^4 )dt =−2 ∫_0 ^1 (t^(12) −5t^(10) +2t^8 −2t^6 +4t^4 )dt =−2[(t^(13) /(13)) −((5t^(11) )/(11)) +((2t^9 )/9) −((2t^7 )/7) +((4t^5 )/5)]_0 ^1 =−2( (1/(13)) −(5/(11)) +(2/9) −(2/7) +(4/5))=−(2/(13)) +((10)/(11)) −(4/9) +(4/7) −(8/5) =α_0 ⇒0< A≤α_0](https://www.tinkutara.com/question/Q47545.png)