Question Number 49941 by turbo msup by abdo last updated on 12/Dec/18
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} {ln}\left(\mathrm{1}+{x}\right){dx} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18
$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{x}} {ln}\left(\mathrm{1}+{x}\right){dx}\approx\mathrm{5}×\left(\mathrm{0}.\mathrm{2}×\mathrm{0}.\mathrm{2}\right) \\ $$
Commented by Abdo msup. last updated on 16/Dec/18
$${for}\:\mid{x}\mid<\mathrm{1}\:\:\:{we}\:{hsve}\:{ln}^{'} \left(\mathrm{1}+{x}\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {x}^{{n}} \:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}{x}^{{n}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} {ln}\left(\mathrm{1}+{x}\right){dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:{x}^{{n}} \right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{e}^{−{x}} {dx}\:\:{by}\:{parts}\:\:\:{u}\:={x}^{{n}} \:{and}\:{v}^{'} \:={e}^{−{x}} \\ $$$${A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{e}^{−{x}} {dx}\:=\left[−{x}^{{n}} \:{e}^{−{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:+\int_{\mathrm{0}} ^{\mathrm{1}} \:{n}\:{x}^{{n}−\mathrm{1}} \:{e}^{−{x}} {dx} \\ $$$$=−\frac{\mathrm{1}}{{e}}\:+{n}\:{A}_{{n}−\mathrm{1}} \:\Rightarrow\:{A}_{{n}} ={nA}_{{n}−\mathrm{1}} −\frac{\mathrm{1}}{{e}}\:\:\:…{be}\:{continued}… \\ $$