Menu Close

calculate-0-1-e-zx-2-x-2-dx-with-z-from-C-and-Re-z-lt-0-




Question Number 90292 by mathmax by abdo last updated on 22/Apr/20
calculate ∫_0 ^∞  ((1−e^(zx^2 ) )/x^2 )dx with z from C and Re(z)<0
calculate01ezx2x2dxwithzfromCandRe(z)<0
Commented by mathmax by abdo last updated on 23/Apr/20
let f(z) =∫_0 ^∞  ((1−e^(zx^2 ) )/x^2 )dx ⇒ f^′ (z) =−∫_0 ^∞  e^(zx^2 ) dx  =−∫_0 ^∞  e^(−((√(−z))x)^2 ) dx =_((√(−z))x =u)   −∫_0 ^∞   e^(−u^2 ) (du/( (√(−z))))  =−(1/( (√(−z)))) ∫_0 ^∞  e^(−u^2 ) du =−(π/(2(√(−z)))) ⇒f(z)=π(√(−z)) +c  f(0)=0 =c ⇒f(z) =π(√(−z))   if  z =−α +iβ      (α>0)  −z =α−iβ  =(√(α^2  +β^2 )) e^(−iarctan((β/α)))  ⇒(√(−z))=(α^2  +β^2 )^(1/4)  e^(−(i/2)arctan((β/α)))   ⇒f(z) =^4 (√(α^2  +β^2 )) e^(−(i/2)arctan((β/α)))
letf(z)=01ezx2x2dxf(z)=0ezx2dx=0e(zx)2dx=zx=u0eu2duz=1z0eu2du=π2zf(z)=πz+cf(0)=0=cf(z)=πzifz=α+iβ(α>0)z=αiβ=α2+β2eiarctan(βα)z=(α2+β2)14ei2arctan(βα)f(z)=4α2+β2ei2arctan(βα)

Leave a Reply

Your email address will not be published. Required fields are marked *