Menu Close

calculate-0-1-i-x-2-dx-




Question Number 36917 by maxmathsup by imad last updated on 07/Jun/18
calculate ∫_0 ^(+∞) (1+i)^(−x^2 ) dx
$${calculate}\:\int_{\mathrm{0}} ^{+\infty} \left(\mathrm{1}+{i}\right)^{−{x}^{\mathrm{2}} } {dx} \\ $$
Commented by math khazana by abdo last updated on 09/Jun/18
we have (1+i)=(√2) e^(i(π/4))  ⇒  I = ∫_0 ^(+∞)    ((√2) e^(i(π/4)) )^(−x^2 ) dx  = ∫_0 ^(+∞)  {e^(ln((√2))+i(π/4)) }^(−x^2 ) dx  =∫_0 ^(+∞)   e^(−{ln((√2)) +i(π/4)}x^2 ) dx  changement  (√(ln((√2))+i(π/4))) x =t give  I  = (1/( (√(ln((√2)) +i(π/4))))) ∫_0 ^∞     e^(−u^2 ) du  I = ((√π)/(2{(√( ln((√2))+i(π/4)))}))  .
$${we}\:{have}\:\left(\mathrm{1}+{i}\right)=\sqrt{\mathrm{2}}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\Rightarrow \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\left(\sqrt{\mathrm{2}}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)^{−{x}^{\mathrm{2}} } {dx} \\ $$$$=\:\int_{\mathrm{0}} ^{+\infty} \:\left\{{e}^{{ln}\left(\sqrt{\mathrm{2}}\right)+{i}\frac{\pi}{\mathrm{4}}} \right\}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$=\int_{\mathrm{0}} ^{+\infty} \:\:{e}^{−\left\{{ln}\left(\sqrt{\mathrm{2}}\right)\:+{i}\frac{\pi}{\mathrm{4}}\right\}{x}^{\mathrm{2}} } {dx}\:\:{changement} \\ $$$$\sqrt{{ln}\left(\sqrt{\mathrm{2}}\right)+{i}\frac{\pi}{\mathrm{4}}}\:{x}\:={t}\:{give} \\ $$$${I}\:\:=\:\frac{\mathrm{1}}{\:\sqrt{{ln}\left(\sqrt{\mathrm{2}}\right)\:+{i}\frac{\pi}{\mathrm{4}}}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{e}^{−{u}^{\mathrm{2}} } {du} \\ $$$${I}\:=\:\frac{\sqrt{\pi}}{\mathrm{2}\left\{\sqrt{\:{ln}\left(\sqrt{\mathrm{2}}\right)+{i}\frac{\pi}{\mathrm{4}}}\right\}}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *