Menu Close

calculate-0-1-Li-2-1-x-4-dx-




Question Number 162002 by mnjuly1970 last updated on 25/Dec/21
          calculate             Ω = ∫_0 ^( 1) Li_( 2)  (1 − x^( 4) )dx = ?      −−−−−
calculateΩ=01Li2(1x4)dx=?
Answered by Lordose last updated on 27/Dec/21
  Ω = ∫_0 ^( 1) Li_2 (1−x^4 )dx  Ω =^(x=x^(1/4) ) (1/4)∫_0 ^( 1) x^((1/4)−1) Li_2 (1−x)dx  Ω =^(IBP) (1/4)(4x^(1/4) Li_2 (1−x)∣_0 ^1  − 4∫_0 ^( 1) ((x^(1/4) log(x))/(1−x))dx)  Ω = −Σ_(n=0) ^∞ ∫_0 ^( 1) x^(n+(5/4)−1) log(x) =^(IBP×2) Σ_(n=0) ^∞ (1/((n+(5/4))^2 ))  N.B :: 𝛙^((m)) (z) = (−1)^(m+1) m!Σ_(k=0) ^∞ (1/((z+k)^(m+1) ))   𝛀 = 𝛙^((1)) ((5/4)) = 8G + 𝛑^2  − 16  ∅sE
Ω=01Li2(1x4)dxΩ=x=x141401x141Li2(1x)dxΩ=IBP14(4x14Li2(1x)01401x14log(x)1xdx)Ω=n=001xn+541log(x)=IBP×2n=01(n+54)2N.B::ψ(m)(z)=(1)m+1m!k=01(z+k)m+1Ω=ψ(1)(54)=8G+π216sE

Leave a Reply

Your email address will not be published. Required fields are marked *