calculate-0-1-ln-1-x-2-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 92087 by mathmax by abdo last updated on 04/May/20 calculate∫01ln(1+x2)1+xdx Commented by mathmax by abdo last updated on 05/May/20 letf(a)=∫01ln(a+x2)x+1dxwitha>0f′(a)=∫011(x+1)(x2+a)dxletdecomposeF(x)=1(x+1)(x2+a)F(x)=αx+1+βx+γx2+aα=1a+1,limx→+∞xF(x)=0=α+β⇒β=−1a+1F(x)=1(a+1)(x+1)+−1a+1x+γx2+aF(0)=1a=1a+1+γa⇒1=aa+1+γ⇒γ=1−aa+1=1a+1⇒F(x)=1a+1{1x+1+−x+1x2+a}⇒∫01F(x)dx=1a+1{∫01dxx+1−12∫012xx2+adx+∫01dxx2+a}∫01dxx+1=[ln(x+1)]01=ln2∫012xx2+adx=[ln(x2+a)]01=ln(1+a)−ln(a)∫01dxx2+a=x=at∫01aadta(1+t2)=1a[arctan(t)]01a=1a{arctan(1a)}⇒f′(a)=ln(2)a+1−12(a+1)(ln(1+a)−ln(a))+1a(a+1)arctan(1a)⇒f(a)=ln(2)∫daa+1−12∫ln(1+a)−ln(a)a+1da+∫arctan(1a)a(a+1)da+C∫daa+1=ln(a+1)+c0∫arctan(1a)a(a+1)da=a=x∫arctan(1x)x(1+x2)(2x)dx=2∫π2−arctanx1+x2dx=πarctan(x)−2∫arctanx1+x2dxbutbyparts∫arctanx1+x2dx=arctan2x−∫arctanx1+x2dx⇒∫arctanx1+x2=12arctan2(x)+c1⇒∫arctan(1a)a(a+1)da=πarctan(a)−arctan2(a)+c1resttofind∫ln(1+a)−ln(a)a+1da….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-0-1-x-x-2-x-dx-with-gt-1-4-1-explicit-f-2-calculate-g-0-1-xdx-x-2-x-3-find-the-value-of-intehrals-0-1-x-x-2-x-2-dx-snd-0-1-xdx-Next Next post: calculate-0-pi-4-ln-cosx-sinx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.