Menu Close

calculate-0-1-ln-1-x-2-1-x-dx-




Question Number 92087 by mathmax by abdo last updated on 04/May/20
 calculate  ∫_0 ^1  ((ln(1+x^2 ))/(1+x))dx
calculate01ln(1+x2)1+xdx
Commented by mathmax by abdo last updated on 05/May/20
let f(a) =∫_0 ^1  ((ln(a+x^2 ))/(x+1))dx  with a>0  f^′ (a) =∫_0 ^1  (1/((x+1)(x^2  +a)))dx  let decompose F(x)=(1/((x+1)(x^2  +a)))  F(x) =(α/(x+1)) +((βx +γ)/(x^2  +a))  α =(1/(a+1))  ,  lim_(x→+∞)  xF(x) =0 =α +β ⇒β =−(1/(a+1))  F(x) =(1/((a+1)(x+1))) +((−(1/(a+1))x +γ)/(x^2  +a))  F(0) =(1/a) =(1/(a+1)) +(γ/a) ⇒1 =(a/(a+1)) +γ ⇒ γ =1−(a/(a+1)) =(1/(a+1)) ⇒  F(x) =(1/(a+1)){(1/(x+1)) +((−x +1)/(x^2  +a))} ⇒  ∫_0 ^1  F(x)dx =(1/(a+1)) { ∫_0 ^1  (dx/(x+1))−(1/2)∫_0 ^1  ((2x)/(x^2  +a))dx +∫_0 ^1  (dx/(x^2 +a))}  ∫_0 ^1  (dx/(x+1)) =[ln(x+1)]_0 ^1  =ln2  ∫_0 ^1  ((2x)/(x^2  +a))dx =[ln(x^2  +a)]_0 ^1  =ln(1+a)−ln(a)  ∫_0 ^1  (dx/(x^2  +a)) =_(x=(√a)t)     ∫_0 ^(1/( (√a)))     (((√a)dt)/(a(1+t^2 ))) =(1/( (√a)))[arctan(t)]_0 ^(1/( (√a)))   =(1/( (√a))){ arctan((1/( (√a))))} ⇒  f^′ (a) =((ln(2))/(a+1))−(1/(2(a+1)))(ln(1+a)−ln(a))+(1/( (√a)(a+1)))arctan((1/( (√a)))) ⇒  f(a) =ln(2) ∫ (da/(a+1)) −(1/2)∫ ((ln(1+a)−ln(a))/(a+1))da  + ∫  ((arctan((1/( (√a)))))/( (√a)(a+1)))da +C  ∫  (da/(a+1)) =ln(a+1) +c_0   ∫  ((arctan((1/( (√a)))))/( (√a)(a+1)))da =_((√a)=x)     ∫  ((arctan((1/x)))/(x(1+x^2 )))(2x)dx  =2∫   (((π/2)−arctanx)/(1+x^2 ))dx =π arctan(x)−2 ∫  ((arctanx)/(1+x^2 ))dx  but  by parts ∫  ((arctanx)/(1+x^2 ))dx =arctan^2 x−∫ ((arctanx)/(1+x^2 ))dx ⇒  ∫((arctanx)/(1+x^2 )) =(1/2) arctan^2 (x)+c_1  ⇒  ∫  ((arctan((1/( (√a)))))/( (√a)(a+1)))da =πarctan((√a))−arctan^2 ((√a)) +c_1   rest to find ∫  ((ln(1+a)−ln(a))/(a+1))da ....be continued....
letf(a)=01ln(a+x2)x+1dxwitha>0f(a)=011(x+1)(x2+a)dxletdecomposeF(x)=1(x+1)(x2+a)F(x)=αx+1+βx+γx2+aα=1a+1,limx+xF(x)=0=α+ββ=1a+1F(x)=1(a+1)(x+1)+1a+1x+γx2+aF(0)=1a=1a+1+γa1=aa+1+γγ=1aa+1=1a+1F(x)=1a+1{1x+1+x+1x2+a}01F(x)dx=1a+1{01dxx+112012xx2+adx+01dxx2+a}01dxx+1=[ln(x+1)]01=ln2012xx2+adx=[ln(x2+a)]01=ln(1+a)ln(a)01dxx2+a=x=at01aadta(1+t2)=1a[arctan(t)]01a=1a{arctan(1a)}f(a)=ln(2)a+112(a+1)(ln(1+a)ln(a))+1a(a+1)arctan(1a)f(a)=ln(2)daa+112ln(1+a)ln(a)a+1da+arctan(1a)a(a+1)da+Cdaa+1=ln(a+1)+c0arctan(1a)a(a+1)da=a=xarctan(1x)x(1+x2)(2x)dx=2π2arctanx1+x2dx=πarctan(x)2arctanx1+x2dxbutbypartsarctanx1+x2dx=arctan2xarctanx1+x2dxarctanx1+x2=12arctan2(x)+c1arctan(1a)a(a+1)da=πarctan(a)arctan2(a)+c1resttofindln(1+a)ln(a)a+1da.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *