Menu Close

calculate-0-1-ln-1-x-4-x-2-dx-




Question Number 130835 by mathmax by abdo last updated on 29/Jan/21
calculate ∫_0 ^1  ((ln(1+x^4 ))/x^2 )dx
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)}{\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Answered by Dwaipayan Shikari last updated on 29/Jan/21
∫_0 ^1 ((log(1+x^4 ))/x^2 )dx  =Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^1 (x^(4n−2) /n)dx  =Σ_(n=1) ^∞ (((−1)^(n+1) )/(n(4n−1)))=Σ_(n=1) ^∞ (((−1)^(n+1) )/n)−4Σ_(n=1) ^∞ (((−1)^(n+1) )/(4n−1))  =log(2)−4((1/3)−(1/7)+(1/(11))−(1/(15))+...)  =log(2)−(1/2)(Σ_(n=0) ^∞ (1/(n+(3/8)))−(1/(n+(7/8))))  =log(2)−(1/2)ψ((7/8))+(1/2)ψ((3/8))
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{4}{n}−\mathrm{2}} }{{n}}{dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}\left(\mathrm{4}{n}−\mathrm{1}\right)}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}}−\mathrm{4}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\mathrm{4}{n}−\mathrm{1}} \\ $$$$={log}\left(\mathrm{2}\right)−\mathrm{4}\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{11}}−\frac{\mathrm{1}}{\mathrm{15}}+…\right) \\ $$$$={log}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\frac{\mathrm{3}}{\mathrm{8}}}−\frac{\mathrm{1}}{{n}+\frac{\mathrm{7}}{\mathrm{8}}}\right) \\ $$$$={log}\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{2}}\psi\left(\frac{\mathrm{7}}{\mathrm{8}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\psi\left(\frac{\mathrm{3}}{\mathrm{8}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *