Menu Close

calculate-0-1-ln-1-x-6-dx-




Question Number 128953 by mathmax by abdo last updated on 11/Jan/21
calculate ∫_0 ^1 ln(1+x^6 )dx
calculate01ln(1+x6)dx
Answered by Lordose last updated on 12/Jan/21
  Ω = ∫_0 ^( 1) ln(1+x^6 )dx = Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^( 1) x^(6n) dx  Ω = Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(6n+1))) = Σ_(n=1) ^∞ (((−1)^(n−1) )/n) −  6Σ_(n=1) ^∞ (((−1)^(n−1) )/(6n+1))  Ω = log(2) + (π− 6 + 2(√3)coth^(−1) ((√3)))  Ω ≈ 0.1157..
Ω=01ln(1+x6)dx=n=1(1)n1n01x6ndxΩ=n=1(1)n1n(6n+1)=n=1(1)n1n6n=1(1)n16n+1Ω=log(2)+(π6+23coth1(3))Ω0.1157..

Leave a Reply

Your email address will not be published. Required fields are marked *