Menu Close

calculate-0-1-ln-1-x-ln-1-x-1-x-dx-




Question Number 157469 by mnjuly1970 last updated on 23/Oct/21
      calculate :   Ω:= ∫_(0 ) ^( 1) (( ln(1+x).ln(1−x))/(1+x)) dx =?
calculate:Ω:=01ln(1+x).ln(1x)1+xdx=?
Answered by qaz last updated on 23/Oct/21
∫_0 ^1 ((ln(1+x)ln(1−x))/(1+x))dx  =∫_1 ^2 ((lnxln(2−x))/x)dx  =∫_(1/2) ^1 (((ln2+lnx)(ln2+ln(1−x)))/x)dx  =∫_(1/2) ^1 ((ln^2 2+ln2(lnx+ln(1−x))+lnxln(1−x))/x)dx  =ln^3 2+ln2∙(−(1/2)ln^2 2+∫_(1/2) ^1 ((ln(1−x))/x)dx)+∫_(1/2) ^1 ((lnxln(1−x))/x)dx  =(1/2)ln^3 2+ln2(Li_2 ((1/2))−Li_2 (1))−lnx∙Li_2 (x)∣_(1/2) ^1 +Li_3 (1)−Li_3 ((1/2))  =(1/2)ln^3 2−(π^2 /6)ln2−ln2∙Li_2 ((1/2))−ln2∙Li_2 ((1/2))+ζ(3)−Li_3 ((1/2))  =−(π^2 /4)ln2+(4/3)ln^3 2+(1/8)ζ(3)  −−−−−−−−−−−−−−−−−  Li_2 ((1/2))=−(1/2)ln^2 2+(π^2 /(12))  Li_3 ((1/2))=−(π^2 /(12))ln2+(1/6)ln^3 2+(7/8)ζ(3)
01ln(1+x)ln(1x)1+xdx=12lnxln(2x)xdx=1/21(ln2+lnx)(ln2+ln(1x))xdx=1/21ln22+ln2(lnx+ln(1x))+lnxln(1x)xdx=ln32+ln2(12ln22+1/21ln(1x)xdx)+1/21lnxln(1x)xdx=12ln32+ln2(Li2(12)Li2(1))lnxLi2(x)1/21+Li3(1)Li3(12)=12ln32π26ln2ln2Li2(12)ln2Li2(12)+ζ(3)Li3(12)=π24ln2+43ln32+18ζ(3)Li2(12)=12ln22+π212Li3(12)=π212ln2+16ln32+78ζ(3)
Commented by mnjuly1970 last updated on 23/Oct/21
  thanks alot...
thanksalot
Commented by mnjuly1970 last updated on 23/Oct/21
  please recheck the answer
pleaserechecktheanswer

Leave a Reply

Your email address will not be published. Required fields are marked *