Menu Close

calculate-0-1-ln-1-x-ln-1-x-x-2-dx-




Question Number 166437 by mnjuly1970 last updated on 20/Feb/22
        calculate   Ω=∫_0 ^( 1) ((  ln(1−x ).ln(1+ x ))/x^( 2) ) dx=?        −−−−−−−
calculateΩ=01ln(1x).ln(1+x)x2dx=?
Answered by qaz last updated on 21/Feb/22
∫_0 ^1 ((ln(1−x)ln(1+x))/x^2 )dx  =∫_0 ^1 ((1/x)−1)(((ln(1+x))/(x−1))+((ln(1−x))/(1+x)))dx  =−∫_0 ^1 ((ln(1+x))/x)dx+∫_0 ^1 ((ln(1−x))/x)dx−2∫_0 ^1 ((ln(1−x))/(1+x))dx  =−(1/(12))π^2 +∫_0 ^1 ((ln(1−x))/x)dx−2∫_1 ^2 ((ln(2−x))/x)dx  =−(1/(12))π^2 +∫_0 ^1 ((ln(1−x))/x)dx−2∫_(1/2) ^1 ((ln2+ln(1−x))/x)dx  =−(1/(12))π^2 −2ln^2 2+Li_2 (1)−2Li_2 ((1/2))  =−(1/(12))π^2 −3ln^2 2
01ln(1x)ln(1+x)x2dx=01(1x1)(ln(1+x)x1+ln(1x)1+x)dx=01ln(1+x)xdx+01ln(1x)xdx201ln(1x)1+xdx=112π2+01ln(1x)xdx212ln(2x)xdx=112π2+01ln(1x)xdx21/21ln2+ln(1x)xdx=112π22ln22+Li2(1)2Li2(12)=112π23ln22

Leave a Reply

Your email address will not be published. Required fields are marked *