Menu Close

calculate-0-1-ln-1-x-x-1-2-dx-




Question Number 91271 by mathmax by abdo last updated on 29/Apr/20
calculate  ∫_0 ^1     ((ln(1+x))/((x+1)^2 ))dx
calculate01ln(1+x)(x+1)2dx
Commented by mathmax by abdo last updated on 29/Apr/20
I =∫_0 ^1  ((ln(1+x))/((x+1)^2 ))dx  by psrts we get   I =[−(1/(x+1))ln(x+1)]_0 ^1  +∫_0 ^1  ((ln(x+1))/(x+1))dx  =−(1/2)ln(2) +∫_1 ^2  ((lnt)/t) dt           (x+1=t)  ∫_1 ^2  ((ln(t))/t) dt =_(lnt =u)   ∫_0 ^(ln(2))  (u/e^u )e^u  du  =∫_0 ^(ln(2))  u du=[(u^2 /2)]_0 ^(ln(2))   =(1/2)ln^2 (2) ⇒ I =−(1/2)ln(2)+(1/2)ln^2 (2).
I=01ln(1+x)(x+1)2dxbypsrtswegetI=[1x+1ln(x+1)]01+01ln(x+1)x+1dx=12ln(2)+12lnttdt(x+1=t)12ln(t)tdt=lnt=u0ln(2)ueueudu=0ln(2)udu=[u22]0ln(2)=12ln2(2)I=12ln(2)+12ln2(2).
Answered by  M±th+et+s last updated on 29/Apr/20
I=∫_0 ^1 ((ln(1+x))/(x^2 +1))dx  put x=tan(u)    dx=sec^2 (u)  =∫_0 ^(π/4) ((ln(tan(u)+1))/(tan^2 u+1))sec^2 (u)du  =∫_0 ^(π/4) ln(tan(u)+1)du  =∫_0 ^(π/4) ln(((sinu+cosu)/(cosu)))du  ∫_0 ^(π/4) ln(sinu+cosu)−ln(cosu) du  ∫_0 ^(π/4) ln((√2)(cos((π/4)−u))−ln(cosu) du  ∫_0 ^(π/4) ln((√2))+ln(cos((π/4)−u))−ln(cosu)du  J=∫_0 ^(π/4) ln(cos((π/4)−u))du  (π/4)−u=t    du=−dt  then J=∫_(π/4) ^0 −ln(cos(t))dt∫_0 ^(π/4) ln(cos(t))dt  ∫_0 ^(π/4) ln(cos(t))dt=∫_0 ^(π/4) ln(cos(u))du    then ∫_0 ^(π/4) ln((√2))+ln(cos(u))−ln(cos(u))du  =∫_0 ^(π/4) ln((√2))du=ln(√2)(π/4)=(π/8)ln(2)
I=01ln(1+x)x2+1dxputx=tan(u)dx=sec2(u)=0π4ln(tan(u)+1)tan2u+1sec2(u)du=0π4ln(tan(u)+1)du=0π4ln(sinu+cosucosu)du0π4ln(sinu+cosu)ln(cosu)du0π4ln(2(cos(π4u))ln(cosu)du0π4ln(2)+ln(cos(π4u))ln(cosu)duJ=0π4ln(cos(π4u))duπ4u=tdu=dtthenJ=π40ln(cos(t))dt0π4ln(cos(t))dt0π4ln(cos(t))dt=0π4ln(cos(u))duthen0π4ln(2)+ln(cos(u))ln(cos(u))du=0π4ln(2)du=ln2π4=π8ln(2)
Commented by mathmax by abdo last updated on 29/Apr/20
thank you sir.
thankyousir.
Commented by  M±th+et+s last updated on 29/Apr/20
you are welcome
youarewelcome
Commented by mathmax by abdo last updated on 29/Apr/20
look sir the integral  is ∫_0 ^1  ((ln(1+x))/((1+x)^2 ))dx not ∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx  any way thank for your work...
looksirtheintegralis01ln(1+x)(1+x)2dxnot01ln(1+x)1+x2dxanywaythankforyourwork
Commented by  M±th+et+s last updated on 29/Apr/20
sorry, i didn′t notice
sorry,ididntnotice

Leave a Reply

Your email address will not be published. Required fields are marked *