calculate-0-1-ln-t-1-t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36180 by prof Abdo imad last updated on 30/May/18 calculate∫01ln(t)(1+t)2dt Commented by prof Abdo imad last updated on 30/May/18 letputI=∫01ln(t)(1+t)2dtletintegratebypartsI=[(1−11+t)ln(t)]01−∫01(1−11+t)dtt=0−∫01dt1+t=−[ln∣1+t∣]01=−ln(2)letprovethatlimt→0(1−11+t)ln(t)=0limt→0(1−11+t)ln(t)=limt→0tln(t)1+t=0becauselimt→0tln(t)=0so★∫01ln(t)(1+t)2dt=−ln(2)★ Answered by sma3l2996 last updated on 30/May/18 I=∫01lnt(1+t)2dtbypartsu=lnt⇒u′=1tv′=1(1+t)2⇒v=−11+tI=[−lnt1+t]01+∫01dtt(1+t)=limt→0+lnt1+t+∫01(1t−11+t)dt=limt→0+lnt1+t+[ln(t1+t)]01=limt→0+(lnt1+t−ln(t))−ln2=−limx→0+tln(t)1+t−ln2=−ln2(becauselimxlnxx→0+=0) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-y-xy-x-y-1-find-D-f-2-calcule-x-f-x-x-y-y-f-y-x-y-interms-of-f-x-y-Next Next post: Question-167252 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.