Menu Close

calculate-0-1-ln-t-1-t-2-dt-




Question Number 36180 by prof Abdo imad last updated on 30/May/18
calculate  ∫_0 ^1   ((ln(t))/((1+t)^2 ))dt
calculate01ln(t)(1+t)2dt
Commented by prof Abdo imad last updated on 30/May/18
let put I = ∫_0 ^1   ((ln(t))/((1+t)^2 ))dt  let integrate by parts  I  =[(1−(1/(1+t)))ln(t)]_0 ^1  −∫_0 ^1   (1−(1/(1+t)))(dt/t)  =0 − ∫_0 ^1   (dt/(1+t)) =−[ln∣1+t∣]_0 ^1  =−ln(2)  let prove that lim_(t→0) (1−(1/(1+t)))ln(t)=0  lim_(t→0) (1−(1/(1+t)))ln(t) =lim_(t→0) ((tln(t))/(1+t)) =0  because  lim_(t→0) tln(t) =0 so  ★  ∫_0 ^1   ((ln(t))/((1+t)^2 ))dt =−ln(2)★
letputI=01ln(t)(1+t)2dtletintegratebypartsI=[(111+t)ln(t)]0101(111+t)dtt=001dt1+t=[ln1+t]01=ln(2)letprovethatlimt0(111+t)ln(t)=0limt0(111+t)ln(t)=limt0tln(t)1+t=0becauselimt0tln(t)=0so01ln(t)(1+t)2dt=ln(2)
Answered by sma3l2996 last updated on 30/May/18
I=∫_0 ^1 ((lnt)/((1+t)^2 ))dt  by parts   u=lnt⇒u′=(1/t)  v′=(1/((1+t)^2 ))⇒v=−(1/(1+t))  I=[−((lnt)/(1+t))]_0 ^1 +∫_0 ^1 (dt/(t(1+t)))  =lim_(t→0^+ ) ((lnt)/(1+t))+∫_0 ^1 ((1/t)−(1/(1+t)))dt  =lim_(t→0^+ ) ((lnt)/(1+t))+[ln((t/(1+t)))]_0 ^1   =lim_(t→0^+ ) (((lnt)/(1+t))−ln(t))−ln2  =−lim_(x→0^+ ) ((tln(t))/(1+t))−ln2=−ln2   (because  lim_(x→0^+ ) xlnx=0)
I=01lnt(1+t)2dtbypartsu=lntu=1tv=1(1+t)2v=11+tI=[lnt1+t]01+01dtt(1+t)=limt0+lnt1+t+01(1t11+t)dt=limt0+lnt1+t+[ln(t1+t)]01=limt0+(lnt1+tln(t))ln2=limx0+tln(t)1+tln2=ln2(becauselimxlnxx0+=0)

Leave a Reply

Your email address will not be published. Required fields are marked *