Menu Close

calculate-0-1-ln-x-ln-1-x-dx-




Question Number 45232 by maxmathsup by imad last updated on 10/Oct/18
calculate  ∫_0 ^1 ln(x)ln(1+x)dx .
calculate01ln(x)ln(1+x)dx.
Commented by maxmathsup by imad last updated on 11/Oct/18
let I = ∫_0 ^1 ln(x)ln(1+x)dx  we have for ∣x∣<1  ln^′ (1+x)=Σ_(n=0) ^∞  (−1)^n x^n  ⇒ln(1+x)=Σ_(n=0) ^∞  (((−1)^n )/(n+1))x^(n+1)  +λ  x=0 ⇒λ=0 ⇒ln(1+x) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n  ⇒  I =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^1  x^n ln(x)dx  by parts  A_n =∫_0 ^1 x^n ln(x)dx =[(1/(n+1))x^(n+1) ln(x)]_(x→0) ^1  −∫_0 ^1 (1/((n+1))) x^n dx  =−(1/((n+1)^2 )) ⇒I =Σ_(n=1) ^∞  (((−1)^n )/(n(n+1)^2 ))  let decompose F(x)=(1/(x(x+1)^2 ))  F(x)=(a/x) +(b/(x+1)) +(c/((x+1)^2 ))  a =lim_(x→0) xF(x)=1  c =lim_(x→−1) (x+1)^2 F(x)=−1 ⇒F(x)=(1/x) +(b/(x+1)) −(1/((x+1)^2 ))  F(1) =(1/4) =1 +(b/2) −(1/4) ⇒1 =4+2b−1 =3+2b ⇒2b=−2 ⇒b=−1 ⇒  F(x) =(1/x) −(1/(x+1)) −(1/((x+1)^2 )) ⇒  I =Σ_(n=1) ^∞  (((−1)^n )/n) −Σ_(n=1) ^∞  (((−1)^n )/(n+1)) −Σ_(n=1) ^∞  (((−1)^n )/((n+1)^2 )) but  Σ_(n=1) ^∞   (((−1)^n )/n) =−ln(2)  Σ_(n=1) ^∞   (((−1)^n )/(n+1)) =Σ_(n=2) ^∞    (((−1)^(n−1) )/n)  = ln(2)−1  Σ_(n=1) ^∞   (1/((n+1)^2 )) =Σ_(n=2) ^∞   (((−1)^n )/n^2 ) = Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +1  let find Σ_(n=1) ^∞  (((−1)^n )/n^2 )  we have Σ_(n=1) ^∞    (((−1)^n )/n^2 ) =Σ_(n=1) ^∞  (1/((2n)^2 )) −Σ_(n=0) ^∞  (1/((2n+1)^2 ))  =(1/4) (π^2 /6) −Σ_(n=0) ^∞   (1/((2n+1)^2 )) but Σ_(n=1) ^∞  (1/n^2 ) =(1/4) Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(3/4) Σ (1/n^2 ) =(3/4) (π^2 /6) =(π^2 /8) ⇒Σ_(n=1) ^∞ (((−1)^n )/n^2 ) =(π^2 /(24)) −(π^2 /8) =−(π^2 /(12)) ⇒  ∫_0 ^1 ln(x)ln(1+x)dx =−ln(2)−ln(2)+1 −(−(π^2 /(12))+1)  =(π^2 /(12)) −2ln(2) .
letI=01ln(x)ln(1+x)dxwehaveforx∣<1ln(1+x)=n=0(1)nxnln(1+x)=n=0(1)nn+1xn+1+λx=0λ=0ln(1+x)=n=1(1)n1nxnI=n=1(1)n1n01xnln(x)dxbypartsAn=01xnln(x)dx=[1n+1xn+1ln(x)]x01011(n+1)xndx=1(n+1)2I=n=1(1)nn(n+1)2letdecomposeF(x)=1x(x+1)2F(x)=ax+bx+1+c(x+1)2a=limx0xF(x)=1c=limx1(x+1)2F(x)=1F(x)=1x+bx+11(x+1)2F(1)=14=1+b2141=4+2b1=3+2b2b=2b=1F(x)=1x1x+11(x+1)2I=n=1(1)nnn=1(1)nn+1n=1(1)n(n+1)2butn=1(1)nn=ln(2)n=1(1)nn+1=n=2(1)n1n=ln(2)1n=11(n+1)2=n=2(1)nn2=n=1(1)nn2+1letfindn=1(1)nn2wehaven=1(1)nn2=n=11(2n)2n=01(2n+1)2=14π26n=01(2n+1)2butn=11n2=14n=11n2+n=01(2n+1)2n=01(2n+1)2=34Σ1n2=34π26=π28n=1(1)nn2=π224π28=π21201ln(x)ln(1+x)dx=ln(2)ln(2)+1(π212+1)=π2122ln(2).
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18
∫_0 ^1 ln(1+x)×ln(x)dx  ≈−0.21(approx)
01ln(1+x)×ln(x)dx0.21(approx)

Leave a Reply

Your email address will not be published. Required fields are marked *