calculate-0-1-ln-x-ln-1-x-ln-1-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60658 by Mr X pcx last updated on 23/May/19 calculate∫01ln(x)ln(1−x)ln(1−x2)dx Commented by maxmathsup by imad last updated on 29/May/19 wehaveln(1−x)=−∑n=1∞xnnandln(1−x2)=−∑n=1∞x2nnif∣x∣<1ln(1−x)ln(1−x2)=(∑n=1∞xnn)(∑n=1∞x2nn)letan=xnnandbn=x2nn⇒ln(1−x)ln(1−x2)=(Σan)(Σbn)=∑n=1∞cnwithcn=∑i+j=naibj=∑i=1n−1aibn−i=∑i=1n−1xiix2n−2in−i=∑i=1nx2n−ii(n−i)⇒∫01ln(x)ln(1−x)(1−x2)dx=∫01(∑n=1∞∑i=1n−1x2n−ii(n−i))ln(x)dx=∑n=1∞(∑i=1n−11i(n−i)∫01x2n−iln(x)dx)∫01x2n−iln(x)dx=byparts[12n−i+1x2n−i+1ln(x)]01−∫011(2n−i+1)x2n−idx=−1(2n−i+1)2⇒I=−∑n=1∞(∑i=1n−11i(n−i)(2n−i+1)2)…becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-126186Next Next post: lim-x-1-2-x-sin-x-1-2cos-x-1-arctan-x-1-ln-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.