Menu Close

calculate-0-1-ln-x-ln-1-x-ln-1-x-2-dx-




Question Number 60658 by Mr X pcx last updated on 23/May/19
calculate ∫_0 ^1 ln(x)ln(1−x)ln(1−x^2 )dx
calculate01ln(x)ln(1x)ln(1x2)dx
Commented by maxmathsup by imad last updated on 29/May/19
we have ln(1−x) =−Σ_(n=1) ^∞  (x^n /n)   and    ln(1−x^2 ) =−Σ_(n=1) ^∞  (x^(2n) /n)   if ∣x∣<1  ln(1−x)ln(1−x^2 ) =(Σ_(n=1) ^∞  (x^n /n))(Σ_(n=1) ^∞  (x^(2n) /n)) let a_n =(x^n /n)  and b_n =(x^(2n) /n) ⇒  ln(1−x)ln(1−x^2 ) =(Σa_n )(Σb_n ) =Σ_(n=1) ^∞  c_n    with  c_n =Σ_(i+j=n)    a_i b_j =Σ_(i=1) ^(n−1)  ai b_(n−i)   =Σ_(i=1) ^(n−1)   (x^i /i) (x^(2n−2i) /(n−i)) =Σ_(i=1) ^n   (x^(2n−i) /(i(n−i)))  ⇒ ∫_0 ^1 ln(x)ln(1−x)(1−x^2 )dx =∫_0 ^1 (Σ_(n=1) ^∞ Σ_(i=1) ^(n−1)   (x^(2n−i) /(i(n−i))))ln(x)dx  =Σ_(n=1) ^∞   (Σ_(i=1) ^(n−1) (1/(i(n−i))) ∫_0 ^1   x^(2n−i) ln(x)dx)    ∫_0 ^1   x^(2n−i)  ln(x)dx =_(by parts)     [(1/(2n−i +1)) x^(2n−i+1) ln(x)]_0 ^1 −∫_0 ^1 (1/((2n−i+1))) x^(2n−i)  dx  =−(1/((2n−i +1)^2 )) ⇒  I =−Σ_(n=1) ^∞ ( Σ_(i=1) ^(n−1)     (1/(i(n−i)(2n−i+1)^2 )))    ...be continued....
wehaveln(1x)=n=1xnnandln(1x2)=n=1x2nnifx∣<1ln(1x)ln(1x2)=(n=1xnn)(n=1x2nn)letan=xnnandbn=x2nnln(1x)ln(1x2)=(Σan)(Σbn)=n=1cnwithcn=i+j=naibj=i=1n1aibni=i=1n1xiix2n2ini=i=1nx2nii(ni)01ln(x)ln(1x)(1x2)dx=01(n=1i=1n1x2nii(ni))ln(x)dx=n=1(i=1n11i(ni)01x2niln(x)dx)01x2niln(x)dx=byparts[12ni+1x2ni+1ln(x)]01011(2ni+1)x2nidx=1(2ni+1)2I=n=1(i=1n11i(ni)(2ni+1)2)becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *