Menu Close

calculate-0-1-lnx-1-x-2-dx-




Question Number 98444 by mathmax by abdo last updated on 14/Jun/20
calculate ∫_0 ^1  ((lnx)/((1+x)^2 ))dx
calculate01lnx(1+x)2dx
Answered by abdomathmax last updated on 14/Jun/20
I =∫_0 ^1  ((lnx)/((1+x)^2 ))dx by parts u^′  =(1/((1+x)^2 )) and v=lnx  I =[(1−(1/(1+x)))lnx]_0 ^1 −∫_0 ^1 (1−(1/(1+x)))(dx/x)  =[((xlnx)/(1+x))]_0 ^1  −∫_0 ^1 ((xdx)/(x(1+x))) =0−∫_0 ^1  (dx/(1+x))  =−[ln(1+x)]_0 ^1  =−ln(2) ⇒  ∫_0 ^1  ((lnx)/((1+x)^2 ))dx =−ln(2)
I=01lnx(1+x)2dxbypartsu=1(1+x)2andv=lnxI=[(111+x)lnx]0101(111+x)dxx=[xlnx1+x]0101xdxx(1+x)=001dx1+x=[ln(1+x)]01=ln(2)01lnx(1+x)2dx=ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *