calculate-0-1-lnx-1-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 98444 by mathmax by abdo last updated on 14/Jun/20 calculate∫01lnx(1+x)2dx Answered by abdomathmax last updated on 14/Jun/20 I=∫01lnx(1+x)2dxbypartsu′=1(1+x)2andv=lnxI=[(1−11+x)lnx]01−∫01(1−11+x)dxx=[xlnx1+x]01−∫01xdxx(1+x)=0−∫01dx1+x=−[ln(1+x)]01=−ln(2)⇒∫01lnx(1+x)2dx=−ln(2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: give-at-form-of-serie-U-n-0-1-x-n-ln-x-1-x-2-dx-Next Next post: 2-6- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.