calculate-0-1-lnx-1-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60496 by maxmathsup by imad last updated on 21/May/19 calculate∫01lnx(1−x)2dx Commented by Mr X pcx last updated on 22/May/19 letA=∫01ln(x)(1−x)2dxwehave∑n=0∞xn=11−xwith∣x∣<1⇒∑n=1∞nxn−1=1(1−x)2⇒A=∫01(∑n=1∞nxn−1)ln(x)dx=∑n=1∞n∫01xn−1ln(x)dx=∑n=1∞nwnbypartsu′=xn−1andv=ln(x)⇒wn=[1nxnln(x)]01−∫011nxndxx=−1n∫01xn−1dx=−1n[1nxn]01=−1n2⇒A=∑n=1∞n(−1n2)=−∑n=1∞1n=−∞sothisintegraldiverges….! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 2-x-4x-solve-it-please-Next Next post: n-1-1-n-x-1-n-n-1-ln-n-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.