Menu Close

calculate-0-1-lnx-1-x-2-dx-




Question Number 60496 by maxmathsup by imad last updated on 21/May/19
calculate  ∫_0 ^1   ((lnx)/((1−x)^2 ))dx
calculate01lnx(1x)2dx
Commented by Mr X pcx last updated on 22/May/19
let A =∫_0 ^1  ((ln(x))/((1−x)^2 ))dx  we have  Σ_(n=0) ^∞  x^n  =(1/(1−x))  with ∣x∣<1 ⇒  Σ_(n=1) ^∞ nx^(n−1) =(1/((1−x)^2 )) ⇒  A =∫_0 ^1 (Σ_(n=1) ^∞  nx^(n−1) )ln(x)dx  =Σ_(n=1) ^∞ n ∫_0 ^1 x^(n−1) ln(x)dx=Σ_(n=1) ^∞ nw_n   by parts  u^′ =x^(n−1)   and v=ln(x) ⇒  w_n =[(1/n)x^n ln(x)]_0 ^1 −∫_0 ^1 (1/n)x^n  (dx/x)  =−(1/n) ∫_0 ^1  x^(n−1) dx =−(1/n)[(1/n) x^n ]_0 ^1   =−(1/n^2 ) ⇒ A =Σ_(n=1) ^∞ n(−(1/n^2 ))  =−Σ_(n=1) ^∞  (1/n) =−∞  so this integral  diverges....!
letA=01ln(x)(1x)2dxwehaven=0xn=11xwithx∣<1n=1nxn1=1(1x)2A=01(n=1nxn1)ln(x)dx=n=1n01xn1ln(x)dx=n=1nwnbypartsu=xn1andv=ln(x)wn=[1nxnln(x)]01011nxndxx=1n01xn1dx=1n[1nxn]01=1n2A=n=1n(1n2)=n=11n=sothisintegraldiverges.!

Leave a Reply

Your email address will not be published. Required fields are marked *