Menu Close

calculate-0-1-sinx-1-x-2-dx-




Question Number 115362 by Bird last updated on 25/Sep/20
calculate ∫_0 ^1  ((sinx)/(1+x^2 ))dx
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sinx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Answered by TANMAY PANACEA last updated on 25/Sep/20
1≥sinx≥−1  (1/(1+x^2 ))≥((sinx)/(1+x^2 ))≥((−1)/(1+x^2 ))  ∫_0 ^1 (dx/(1+x^2 ))≥∫_0 ^1 ((sinx)/(1+x^2 ))dx≥∫_0 ^1 ((−dx)/(1+x^2 ))  tan^(−1) x∣_0 ^1 ≥I≥−tan^(−1) x∣_0 ^1   (π/4)≥I≥−(π/4)
$$\mathrm{1}\geqslant{sinx}\geqslant−\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\geqslant\frac{{sinx}}{\mathrm{1}+{x}^{\mathrm{2}} }\geqslant\frac{−\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\geqslant\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{sinx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\geqslant\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${tan}^{−\mathrm{1}} {x}\mid_{\mathrm{0}} ^{\mathrm{1}} \geqslant{I}\geqslant−{tan}^{−\mathrm{1}} {x}\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\frac{\pi}{\mathrm{4}}\geqslant{I}\geqslant−\frac{\pi}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *