Menu Close

calculate-0-1-tdt-1-t-4-




Question Number 40126 by maxmathsup by imad last updated on 16/Jul/18
calculate  ∫_0 ^1    ((tdt)/(1+t^4 ))
calculate01tdt1+t4
Commented by maxmathsup by imad last updated on 21/Jul/18
we have  ∫_0 ^∞     (t/(1+t^4 ))dt = ∫_0 ^1  (t/(1+t^4 ))dt  + ∫_1 ^(+∞)   (t/(1+t^4 ))dt  but  ∫_1 ^(+∞)   (t/(1+t^4 ))dt =_(t=(1/x))     ∫_0 ^1     (1/(x(1+(1/x^4 )))) (dx/x^2 ) = ∫_0 ^1     (dx/(x^3 (1+(1/x^4 ))))  = ∫_0 ^1      (dx/(x^3  +(1/x))) dx =∫_0 ^1   ((xdx)/(x^4  +1)) ⇒  ∫_0 ^∞     (t/(1+t^4 ))dt =2 ∫_0 ^1   ((tdt)/(1+t^4 )) ⇒ ∫_0 ^1     ((tdt)/(1+t^4 )) =(1/2) ∫_0 ^∞    (t/(1+t^4 ))dt changement  t=u^(1/4)     give  ∫_0 ^∞    (t/(1+t^4 ))dt =∫_0 ^∞    ((u^(1/4)  )/(1+u)) (1/4) u^((1/4)−1)  du  =(1/4) ∫_0 ^∞    (u^((1/2)−1) /(1+u))du =(1/4) (π/(sin((π/2)))) =(π/4) ⇒  ∫_0 ^1   ((tdt)/(1+t^4 )) = (π/8) .
wehave0t1+t4dt=01t1+t4dt+1+t1+t4dtbut1+t1+t4dt=t=1x011x(1+1x4)dxx2=01dxx3(1+1x4)=01dxx3+1xdx=01xdxx4+10t1+t4dt=201tdt1+t401tdt1+t4=120t1+t4dtchangementt=u14give0t1+t4dt=0u141+u14u141du=140u1211+udu=14πsin(π2)=π401tdt1+t4=π8.

Leave a Reply

Your email address will not be published. Required fields are marked *