Menu Close

calculate-0-1-x-1-3-1-x-1-x-2-3-dx-




Question Number 43904 by abdo.msup.com last updated on 17/Sep/18
calculate  ∫_0 ^∞   (((1+x)^(1/3) −1)/(x(1+x)^(2/3) ))dx
calculate0(1+x)131x(1+x)23dx
Commented by maxmathsup by imad last updated on 19/Sep/18
changement (1+x)^(1/3)  =t give 1+x =t^3  ⇒  I =∫_1 ^(+∞)   ((t−1)/((t^3 −1)t^2 ))  (3t^2 )dt = ∫_1 ^(+∞)   (3/(t^2  +t +1))dt  = ∫_1 ^(+∞)     ((3dt)/((t+(1/2))^2  +(3/4))) =_(t+(1/2)=((√3)/2)u)   (4/3) ∫_(√3) ^(+∞)      (3/((1+u^2 )))((√3)/2)du  =2(√3) ∫_(√3) ^(+∞)    (du/(1+u^2 )) =2(√3)[arctan(u)]_(√3) ^(+∞)  =2(√3){(π/2)−(π/3)}=2(√3).(π/6)  I = ((π(√3))/3) .
changement(1+x)13=tgive1+x=t3I=1+t1(t31)t2(3t2)dt=1+3t2+t+1dt=1+3dt(t+12)2+34=t+12=32u433+3(1+u2)32du=233+du1+u2=23[arctan(u)]3+=23{π2π3}=23.π6I=π33.
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18
1+x=t^3     dx=3t^2 dt  ∫_1 ^∞ ((t−1)/((t^3 −1)(t^2 )))dt  ∫_1 ^∞ (dt/(t^2 (t^2 +t+1)))  (1/(t^2 (t^2 +t+1)))=(a/t)+(b/t^2 )+((ct+d)/(t^2 +t+1))  1=at(t^2 +t+1)+b(t^2 +t+1)+(ct+d)t^2   1=a(t^3 +t^2 +t)+b(t^2 +t+1)+(ct^3 +dt^2 )  1=t^3 (a+c)+t^2 (a+b+d)+t(a+b)+b  b=1  a+c=0  a+1+d=0  a+1=0   a=−1  c=1  −1+1+d=0   d=0  a=−1   b=1   c=1   d=0  ∫_1 ^∞ (dt/(t^2 (t^2 +t+1)))=∫_1 ^∞ ((−1)/t)dt+∫_1 ^∞ (1/t^2 )dt+∫_1 ^∞ (t/(t^2 +t+1))dt  =∣−lnt∣_1 ^∞ +∣(((−1)/t))∣_1 ^∞ +(1/2)∫_1 ^∞ ((2t+1−1)/(t^2 +t+1))dt  =(−ln∞)+1+(1/2)∫_1 ^∞ ((d(t^2 +t+1))/(t^2 +t+1))−(1/2)∫_1 ^∞ (dt/(t^2 +2.t.(1/2)+(1/4)+1−(1/4)))  =(−ln∞)+1+(1/2)∣ln(t^2 +t+1)∣_1 ^∞ −(1/2)∫_1 ^∞  (dt/((t+(1/2))^2 +((((√3)[)/2))^2 ))  =(−ln∞)+1+(1/2)ln(∞)+(1/2)ln3−(1/2)×(1/((√3)/2))∣tan^(−1) (((t+(1/2))/((√3)/2)))∣_1 ^∞   =(−(1/2)ln∞)+1+(1/2)ln3−(1/( (√3)))((Π/2)−(Π/3))  =(−(1/2)ln∞)+1+(1/2)ln3−(1/( (√3)))((Π/6))
1+x=t3dx=3t2dt1t1(t31)(t2)dt1dtt2(t2+t+1)1t2(t2+t+1)=at+bt2+ct+dt2+t+11=at(t2+t+1)+b(t2+t+1)+(ct+d)t21=a(t3+t2+t)+b(t2+t+1)+(ct3+dt2)1=t3(a+c)+t2(a+b+d)+t(a+b)+bb=1a+c=0a+1+d=0a+1=0a=1c=11+1+d=0d=0a=1b=1c=1d=01dtt2(t2+t+1)=11tdt+11t2dt+1tt2+t+1dt=∣lnt1+(1t)1+1212t+11t2+t+1dt=(ln)+1+121d(t2+t+1)t2+t+1121dtt2+2.t.12+14+114=(ln)+1+12ln(t2+t+1)1121dt(t+12)2+(3[2)2=(ln)+1+12ln()+12ln312×132tan1(t+1232)1=(12ln)+1+12ln313(Π2Π3)=(12ln)+1+12ln313(Π6)

Leave a Reply

Your email address will not be published. Required fields are marked *