Menu Close

calculate-0-1-x-1-x-2-1-2-dx-




Question Number 36431 by prof Abdo imad last updated on 02/Jun/18
calculate ∫_0 ^1    ((x+1)/((x^2  +1)^2 ))dx
calculate01x+1(x2+1)2dx
Commented by prof Abdo imad last updated on 03/Jun/18
I = (1/2)∫_0 ^1   ((2x +2)/((x^2  +1)^2 ))dx =(1/2)∫  ((2x)/((x^2  +1)^2 )) + ∫_0 ^1   (dx/((x^2  +1)^2 ))  =[((−1)/(2(x^2  +1)))]_0 ^1  + ∫_0 ^1     (dx/((x^2  +1)^2 ))  changement  x=tanθ give   ∫_0 ^1     (dx/((1+x^2 )^2 )) = ∫_0 ^(π/4)     (((1+tan^2 θ))/((1+tan^2 θ)^2 ))dθ  = ∫_0 ^(π/4)   cos^2 θ dθ = ∫_0 ^(π/4)  ((1+cos(2θ))/2)dθ  =(π/8)  +(1/4)[sin(2θ)]_0 ^(π/4)  = (π/8) + (1/4) ⇒  I =(1/2) −(1/4) +(π/8) +(1/4) ⇒   I = (π/8) +(1/2) .
I=12012x+2(x2+1)2dx=122x(x2+1)2+01dx(x2+1)2=[12(x2+1)]01+01dx(x2+1)2changementx=tanθgive01dx(1+x2)2=0π4(1+tan2θ)(1+tan2θ)2dθ=0π4cos2θdθ=0π41+cos(2θ)2dθ=π8+14[sin(2θ)]0π4=π8+14I=1214+π8+14I=π8+12.

Leave a Reply

Your email address will not be published. Required fields are marked *