Menu Close

calculate-0-1-x-3-2-x-2-3-dx-




Question Number 60050 by maxmathsup by imad last updated on 17/May/19
calculate ∫_0 ^1 (x^3 −2)(√(x^2  +3))dx
calculate01(x32)x2+3dx
Commented by maxmathsup by imad last updated on 18/May/19
let A =∫_0 ^1 (x^3 −2)(√(x^2  +3))dx ⇒A =∫_0 ^1 x^3 (√(x^2  +3))dx −2 ∫_0 ^1 (√(x^2  +3))dx=H−K  changement (√(x^2  +3))=t give  x^2  +3 =t^2  ⇒2xdx =2tdt ⇒  A =∫_(√3) ^2 (t^2 −3)t tdt =∫_(√3) ^2 t^2 (t^2 −3)dt =∫_(√3) ^2 (t^4 −3t^2 )dt  =[(1/5)t^5 −t^3 ]_(√3) ^2  =((32)/5) −8−(1/5)((√3))^5  +((√3))^3   ∫_0 ^1 (√(x^2  +3))dx =_(x =(√3)sh(t))    ∫_0 ^(argsh((1/( (√3))))) (√3)ch(t)(√3)ch(t)dt  =3 ∫_0 ^(ln((1/( (√3))) +(√(1+(1/3))))) ch^2 (t)dt =(3/2) ∫_0 ^(ln((1/( (√3)))+(2/( (√3))))) (1+ch(2t))dt  =(3/2)ln((√3)) +(3/4)[sh(2t)]_0 ^(ln((√3)))  =(3/2)ln((√3))+(3/8)[e^(2t) −e^(−2t) ]_0 ^(ln((√3)))   =(3/4)ln(3) +(3/8){ ((√3))^2 −(1/(((√3))^2 ))} =(3/4)ln(3)+(3/8){3−(1/3)}  =(3/4)ln(3) +1  so the value of A is determined .
letA=01(x32)x2+3dxA=01x3x2+3dx201x2+3dx=HKchangementx2+3=tgivex2+3=t22xdx=2tdtA=32(t23)ttdt=32t2(t23)dt=32(t43t2)dt=[15t5t3]32=325815(3)5+(3)301x2+3dx=x=3sh(t)0argsh(13)3ch(t)3ch(t)dt=30ln(13+1+13)ch2(t)dt=320ln(13+23)(1+ch(2t))dt=32ln(3)+34[sh(2t)]0ln(3)=32ln(3)+38[e2te2t]0ln(3)=34ln(3)+38{(3)21(3)2}=34ln(3)+38{313}=34ln(3)+1sothevalueofAisdetermined.
Answered by tanmay last updated on 17/May/19
∫x^3 (√(x^2 +3)) dx−2∫(√(x^2 +3)) dx  I_1 =∫x^3 (√(x^2 +3)) dx  t^2 =x^2 +3  2tdt=2xdx  ∫x^2 ×x(√(x^2 +3)) dx  ∫(t^2 −3)×t×tdt  ∫(t^4 −3t^2 )dt  =(t^5 /5)−t^3 +c  =(((x^2 +3)^(5/2) )/5)−(x^2 +3)^(3/2) +c  I_2 =∫(√(x^2 +3)) dx→use formula  =((x(√(x^2 +3)))/2)+(3/2)ln(x+(√(x^2 +3)) )+c_1   I=I_1 −2I_2   I=∣(((x^2 +3)^(5/2) )/5)−(x^2 +3)^(3/2)  −x(√(x^2 +3)) −3ln(x+(√(x^2 +3)) )∣_0 ^1   =(1/5){(4)^(5/2) −(3)^(5/2) }−{(4)^(3/2) −3^(3/2) }−{(√4) −0}−3ln((3/( (√3))))  =((32)/5)−(9/5)(√3) −8+3(√3) −2−(3/2)ln3  =((32)/5)−10+3(√3) (1−(3/5))−(3/2)ln3  =((−18)/5)+(6/5)(√3) −(3/2)ln3
x3x2+3dx2x2+3dxI1=x3x2+3dxt2=x2+32tdt=2xdxx2×xx2+3dx(t23)×t×tdt(t43t2)dt=t55t3+c=(x2+3)525(x2+3)32+cI2=x2+3dxuseformula=xx2+32+32ln(x+x2+3)+c1I=I12I2I=∣(x2+3)525(x2+3)32xx2+33ln(x+x2+3)01=15{(4)52(3)52}{(4)32332}{40}3ln(33)=3259538+33232ln3=32510+33(135)32ln3=185+65332ln3

Leave a Reply

Your email address will not be published. Required fields are marked *