calculate-0-1-x-3-2-x-2-3-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60050 by maxmathsup by imad last updated on 17/May/19 calculate∫01(x3−2)x2+3dx Commented by maxmathsup by imad last updated on 18/May/19 letA=∫01(x3−2)x2+3dx⇒A=∫01x3x2+3dx−2∫01x2+3dx=H−Kchangementx2+3=tgivex2+3=t2⇒2xdx=2tdt⇒A=∫32(t2−3)ttdt=∫32t2(t2−3)dt=∫32(t4−3t2)dt=[15t5−t3]32=325−8−15(3)5+(3)3∫01x2+3dx=x=3sh(t)∫0argsh(13)3ch(t)3ch(t)dt=3∫0ln(13+1+13)ch2(t)dt=32∫0ln(13+23)(1+ch(2t))dt=32ln(3)+34[sh(2t)]0ln(3)=32ln(3)+38[e2t−e−2t]0ln(3)=34ln(3)+38{(3)2−1(3)2}=34ln(3)+38{3−13}=34ln(3)+1sothevalueofAisdetermined. Answered by tanmay last updated on 17/May/19 ∫x3x2+3dx−2∫x2+3dxI1=∫x3x2+3dxt2=x2+32tdt=2xdx∫x2×xx2+3dx∫(t2−3)×t×tdt∫(t4−3t2)dt=t55−t3+c=(x2+3)525−(x2+3)32+cI2=∫x2+3dx→useformula=xx2+32+32ln(x+x2+3)+c1I=I1−2I2I=∣(x2+3)525−(x2+3)32−xx2+3−3ln(x+x2+3)∣01=15{(4)52−(3)52}−{(4)32−332}−{4−0}−3ln(33)=325−953−8+33−2−32ln3=325−10+33(1−35)−32ln3=−185+653−32ln3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: One-number-is-written-on-the-board-Each-time-the-number-is-either-squared-or-multiplied-bh-2-If-1-is-written-on-the-board-at-the-beginning-it-is-necessary-to-perform-at-least-several-operations-to-Next Next post: Question-191121 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.