Menu Close

calculate-0-1-x-4-1-x-6-dx-




Question Number 33026 by prof Abdo imad last updated on 09/Apr/18
calculate ∫_0 ^∞    ((1+x^4 )/(1+x^6 )) dx .
calculate01+x41+x6dx.
Commented by abdo imad last updated on 09/Apr/18
let put I =∫_0 ^∞  ((1+x^4 )/(1+x^6 ))dx  we have  I = ∫_0 ^∞   (dx/(1+x^6 )) + ∫_0 ^∞   (x^4 /(1+x^6 ))dx .the ch.x^6 =t give  ∫_0 ^∞   (dx/(1+x^6 )) =∫_0 ^∞  (((1/6)t^((1/6)−1) )/(1+t))dt=(1/6)∫_0 ^∞   (t^((1/6)−1) /(1+t))dt  =(1/6) (π/(sin((π/6))))   ( by using the result ∫_0 ^∞   (t^(a−1) /(1+t))dt = (π/(sin(πa)))  with 0<a<1 )  = (π/(6.(1/2))) = (π/3)   .also the same ch.x^6 =t give x=t^(1/6)   ∫_0 ^∞   (x^4 /(1+x^6 ))dx = ∫_0 ^∞     (t^(4/6) /(1+t)) .(1/6) t^((1/6)−1)  dt  =(1/6) ∫_0 ^∞    (t^((4/6) +(1/6) −1) /(1+t)) dt  =(1/6) ∫_0 ^∞    (t^((5/6) −1) /(1+t)) dt  =(1/6) (π/(sin(((5π)/6)))) = (π/(6sin(π−(π/6)))) = (π/(6 sin((π/6)))) =(π/3) ⇒  I =(π/3) +(π/3) =((2π)/3) .
letputI=01+x41+x6dxwehaveI=0dx1+x6+0x41+x6dx.thech.x6=tgive0dx1+x6=016t1611+tdt=160t1611+tdt=16πsin(π6)(byusingtheresult0ta11+tdt=πsin(πa)with0<a<1)=π6.12=π3.alsothesamech.x6=tgivex=t160x41+x6dx=0t461+t.16t161dt=160t46+1611+tdt=160t5611+tdt=16πsin(5π6)=π6sin(ππ6)=π6sin(π6)=π3I=π3+π3=2π3.
Answered by Joel578 last updated on 09/Apr/18
I = lim_(n→∞)  (∫_0 ^n  ((x^4  + 1)/(x^6  + 1)) dx)    ∫ ((x^4  + 1)/(x^6  + 1)) dx = ∫ ((x^4  + 1 + x^2  − x^2 )/((x^2  +1)(x^4  − x^2  + 1))) dx                            = ∫ (1/(x^2  + 1)) dx + ∫ (x^2 /(x^6  + 1)) dx                            = tan^(−1)  x + ∫ (x^2 /(x^6  + 1)) dx   (u = x^3   →  du = 3x^2  dx)                            = tan^(−1)  x + (1/3) ∫ (1/(u^2  + 1)) du                            = tan^(−1)  x + (1/3)tan^(−1)  u + C                            = tan^(−1)  (x) + (1/3)tan^(−1)  (x^3 ) + C    I = lim_(n→∞)  [tan^(−1)  (x) + (1/3)tan^(−1)  (x^3 )]_0 ^n      = lim_(n→∞)  (tan^(−1)  (n) + (1/3)tan^(−1)  (n^3 )) − (tan^(−1)  (0) + (1/3)tan^(−1)  (0))     = (π/2) + (1/3)((π/2)) − 0     = ((2π)/3)
I=limn(0nx4+1x6+1dx)x4+1x6+1dx=x4+1+x2x2(x2+1)(x4x2+1)dx=1x2+1dx+x2x6+1dx=tan1x+x2x6+1dx(u=x3du=3x2dx)=tan1x+131u2+1du=tan1x+13tan1u+C=tan1(x)+13tan1(x3)+CI=limn[tan1(x)+13tan1(x3)]0n=limn(tan1(n)+13tan1(n3))(tan1(0)+13tan1(0))=π2+13(π2)0=2π3

Leave a Reply

Your email address will not be published. Required fields are marked *