calculate-0-1-x-4-1-x-6-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33026 by prof Abdo imad last updated on 09/Apr/18 calculate∫0∞1+x41+x6dx. Commented by abdo imad last updated on 09/Apr/18 letputI=∫0∞1+x41+x6dxwehaveI=∫0∞dx1+x6+∫0∞x41+x6dx.thech.x6=tgive∫0∞dx1+x6=∫0∞16t16−11+tdt=16∫0∞t16−11+tdt=16πsin(π6)(byusingtheresult∫0∞ta−11+tdt=πsin(πa)with0<a<1)=π6.12=π3.alsothesamech.x6=tgivex=t16∫0∞x41+x6dx=∫0∞t461+t.16t16−1dt=16∫0∞t46+16−11+tdt=16∫0∞t56−11+tdt=16πsin(5π6)=π6sin(π−π6)=π6sin(π6)=π3⇒I=π3+π3=2π3. Answered by Joel578 last updated on 09/Apr/18 I=limn→∞(∫0nx4+1x6+1dx)∫x4+1x6+1dx=∫x4+1+x2−x2(x2+1)(x4−x2+1)dx=∫1x2+1dx+∫x2x6+1dx=tan−1x+∫x2x6+1dx(u=x3→du=3x2dx)=tan−1x+13∫1u2+1du=tan−1x+13tan−1u+C=tan−1(x)+13tan−1(x3)+CI=limn→∞[tan−1(x)+13tan−1(x3)]0n=limn→∞(tan−1(n)+13tan−1(n3))−(tan−1(0)+13tan−1(0))=π2+13(π2)−0=2π3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-98560Next Next post: prove-that-0-1-ln-1-x-1-x-dx-x-1-x-2-pi-2-2-m-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.