calculate-0-1-x-sinx-dx-let-f-x-sinx-f-x-f-0-xf-0-x-2-2-f-2-0-x-3-3-f-3-0-o-x-4-but-f-0-0-f-x-cosx-f-0-1-f-2-x-sinx-f-2-0-0-f- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 59185 by maxmathsup by imad last updated on 09/May/19 calculate∫01xsinxdxletf(x)=sinx⇒f(x)=f(0)+xf′(0)+x22f(2)(0)+x33!f(3)(0)+o(x4)butf(0)=0f′(x)=cosx⇒f′(0)=1f(2)(x)=−sinx⇒f(2)(0)=0f(3)(0)=−cos(x)⇒f(3)(0)=−1⇒sinx=x−x36+o(x4)⇒x−x33⩽sinx⩽xforx∈]0,1]1x⩽1sinx⩽1x−x36⇒1⩽xsinx⩽11−x26⇒1⩽∫01xsinxdx⩽∫01dx1−x26∫01dx1−x26=x=6t∫0166dt1−t2=62∫016(11−t+11+t)dt=62[ln∣1+t1−t∣]016=62{ln(1+161−16)}=62ln(6+16−1)⇒1⩽∫01xsinxdx⩽62ln(6+16−1). Commented by maxmathsup by imad last updated on 09/May/19 itsonlyatrychang.tan(x2)=tgiveI=∫01xsinxdx=∫0tan(12)2arctan(t)2t1+t22dt1+t2=2∫0tan(12)arctan(t)tdtletintroducetheparametricfunctionf(α)=∫0tan(12)arctan(tα)tdtwehavef′(α)=∫0tan(12)tt(1+α2t2)dt=∫0tan(12)dt1+α2t2=αt=u∫0αtan(12)duα(1+u2)=1α[arctan(u)]0αtan(12)=1αarctan(αtan(12))⇒f(α)=∫1αarctan(αtan(12))dα+c…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-190253Next Next post: solve-the-differential-equation-d-2-dt-2-x-2-x-t-0-x-0-0-x-2-0-o- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.