Question Number 59185 by maxmathsup by imad last updated on 09/May/19
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{sinx}}{dx} \\ $$$${let}\:{f}\left({x}\right)\:={sinx}\:\Rightarrow{f}\left({x}\right)\:={f}\left(\mathrm{0}\right)\:+{xf}^{'} \left(\mathrm{0}\right)\:+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{f}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}{f}^{\left(\mathrm{3}\right)} \left(\mathrm{0}\right)\:+{o}\left({x}^{\mathrm{4}} \right) \\ $$$${but}\:{f}\left(\mathrm{0}\right)\:=\mathrm{0}\:\:\:{f}^{'} \left({x}\right)\:={cosx}\:\Rightarrow{f}^{'} \left(\mathrm{0}\right)=\mathrm{1}\:\:\:\:{f}^{\left(\mathrm{2}\right)} \left({x}\right)\:=−{sinx}\:\Rightarrow{f}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}^{\left(\mathrm{3}\right)} \left(\mathrm{0}\right)\:=−{cos}\left({x}\right)\:\Rightarrow{f}^{\left(\mathrm{3}\right)} \left(\mathrm{0}\right)\:=−\mathrm{1}\:\Rightarrow{sinx}\:={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\:+{o}\left({x}^{\mathrm{4}} \right)\:\Rightarrow \\ $$$$\left.{x}\left.−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:\leqslant{sinx}\:\leqslant{x}\:\:\:\:{for}\:{x}\:\in\right]\mathrm{0},\mathrm{1}\right]\:\:\:\frac{\mathrm{1}}{{x}}\:\leqslant\frac{\mathrm{1}}{{sinx}}\:\leqslant\frac{\mathrm{1}}{{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}}\:\Rightarrow\mathrm{1}\leqslant\frac{{x}}{{sinx}}\:\leqslant\frac{\mathrm{1}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}}\:\Rightarrow \\ $$$$\mathrm{1}\:\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}}{{sinx}}\:{dx}\:\leqslant\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{dx}}{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}}\:=_{{x}\:=\sqrt{\mathrm{6}}{t}} \:\:\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}} \:\:\:\:\frac{\sqrt{\mathrm{6}}{dt}}{\mathrm{1}−{t}^{\mathrm{2}} }\:=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\:\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}} \:\:\left(\frac{\mathrm{1}}{\mathrm{1}−{t}}\:+\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){dt} \\ $$$$=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\left[{ln}\mid\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\mid\right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}} \:\:=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\:\left\{\:{ln}\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}}{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}}\right)\right\}\:=\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\:{ln}\left(\frac{\sqrt{\mathrm{6}}+\mathrm{1}}{\:\sqrt{\mathrm{6}}−\mathrm{1}}\right)\:\Rightarrow \\ $$$$\mathrm{1}\leqslant\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{sinx}}\:{dx}\:\leqslant\:\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}{ln}\left(\frac{\sqrt{\mathrm{6}}+\mathrm{1}}{\:\sqrt{\mathrm{6}}−\mathrm{1}}\right)\:. \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 09/May/19
$${its}\:{only}\:{a}\:{try}\:\:\:{chang}.{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:\:{give}\:\: \\ $$$${I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}}{{sinx}}{dx}\:=\int_{\mathrm{0}} ^{{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\:\:\frac{\mathrm{2}{arctan}\left({t}\right)}{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\mathrm{2}\int_{\mathrm{0}} ^{{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\:\:\frac{{arctan}\left({t}\right)}{{t}}\:{dt} \\ $$$${let}\:{introduce}\:{the}\:{parametric}\:{function}\:{f}\left(\alpha\right)\:=\int_{\mathrm{0}} ^{{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\:\frac{{arctan}\left({t}\alpha\right)}{{t}}\:{dt} \\ $$$${we}\:{have}\:{f}^{'} \left(\alpha\right)\:=\int_{\mathrm{0}} ^{{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\:\frac{{t}}{{t}\left(\mathrm{1}+\alpha^{\mathrm{2}} {t}^{\mathrm{2}} \right)}\:{dt}\:=\int_{\mathrm{0}} ^{{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\:\frac{{dt}}{\mathrm{1}+\alpha^{\mathrm{2}} {t}^{\mathrm{2}} } \\ $$$$=_{\alpha{t}\:={u}} \:\:\:\:\int_{\mathrm{0}} ^{\alpha{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:\:\:\frac{{du}}{\alpha\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\alpha}\:\left[{arctan}\left({u}\right)\right]_{\mathrm{0}} ^{\alpha{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \:=\:\frac{\mathrm{1}}{\alpha}\:{arctan}\left(\alpha{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right)\:\Rightarrow \\ $$$${f}\left(\alpha\right)\:=\int\:\:\frac{\mathrm{1}}{\alpha}\:{arctan}\left(\alpha\:{tan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right){d}\alpha\:+{c}\:…{be}\:{continued}… \\ $$