Menu Close

calculate-0-1-x-sinx-dx-let-f-x-sinx-f-x-f-0-xf-0-x-2-2-f-2-0-x-3-3-f-3-0-o-x-4-but-f-0-0-f-x-cosx-f-0-1-f-2-x-sinx-f-2-0-0-f-




Question Number 59185 by maxmathsup by imad last updated on 09/May/19
calculate ∫_0 ^1   (x/(sinx))dx  let f(x) =sinx ⇒f(x) =f(0) +xf^′ (0) +(x^2 /2)f^((2)) (0)+(x^3 /(3!))f^((3)) (0) +o(x^4 )  but f(0) =0   f^′ (x) =cosx ⇒f^′ (0)=1    f^((2)) (x) =−sinx ⇒f^((2)) (0)=0  f^((3)) (0) =−cos(x) ⇒f^((3)) (0) =−1 ⇒sinx =x−(x^3 /6) +o(x^4 ) ⇒  x−(x^3 /3) ≤sinx ≤x    for x ∈]0,1]   (1/x) ≤(1/(sinx)) ≤(1/(x−(x^3 /6))) ⇒1≤(x/(sinx)) ≤(1/(1−(x^2 /6))) ⇒  1 ≤ ∫_0 ^1  (x/(sinx)) dx ≤  ∫_0 ^1    (dx/(1−(x^2 /6)))  ∫_0 ^1    (dx/(1−(x^2 /6))) =_(x =(√6)t)     ∫_0 ^(1/( (√6)))     (((√6)dt)/(1−t^2 )) =((√6)/2)  ∫_0 ^(1/( (√6)))   ((1/(1−t)) +(1/(1+t)))dt  =((√6)/2)[ln∣((1+t)/(1−t))∣]_0 ^(1/( (√6)))   =((√6)/2) { ln(((1+(1/( (√6))))/(1−(1/( (√6))))))} =((√6)/2) ln((((√6)+1)/( (√6)−1))) ⇒  1≤ ∫_0 ^1   (x/(sinx)) dx ≤ ((√6)/2)ln((((√6)+1)/( (√6)−1))) .
calculate01xsinxdxletf(x)=sinxf(x)=f(0)+xf(0)+x22f(2)(0)+x33!f(3)(0)+o(x4)butf(0)=0f(x)=cosxf(0)=1f(2)(x)=sinxf(2)(0)=0f(3)(0)=cos(x)f(3)(0)=1sinx=xx36+o(x4)xx33sinxxforx]0,1]1x1sinx1xx361xsinx11x26101xsinxdx01dx1x2601dx1x26=x=6t0166dt1t2=62016(11t+11+t)dt=62[ln1+t1t]016=62{ln(1+16116)}=62ln(6+161)101xsinxdx62ln(6+161).
Commented by maxmathsup by imad last updated on 09/May/19
its only a try   chang.tan((x/2))=t  give    I =∫_0 ^1   (x/(sinx))dx =∫_0 ^(tan((1/2)))    ((2arctan(t))/((2t)/(1+t^2 ))) ((2dt)/(1+t^2 )) = 2∫_0 ^(tan((1/2)))    ((arctan(t))/t) dt  let introduce the parametric function f(α) =∫_0 ^(tan((1/2)))   ((arctan(tα))/t) dt  we have f^′ (α) =∫_0 ^(tan((1/2)))   (t/(t(1+α^2 t^2 ))) dt =∫_0 ^(tan((1/2)))   (dt/(1+α^2 t^2 ))  =_(αt =u)     ∫_0 ^(αtan((1/2)))    (du/(α(1+u^2 ))) =(1/α) [arctan(u)]_0 ^(αtan((1/2)))  = (1/α) arctan(αtan((1/2))) ⇒  f(α) =∫  (1/α) arctan(α tan((1/2)))dα +c ...be continued...
itsonlyatrychang.tan(x2)=tgiveI=01xsinxdx=0tan(12)2arctan(t)2t1+t22dt1+t2=20tan(12)arctan(t)tdtletintroducetheparametricfunctionf(α)=0tan(12)arctan(tα)tdtwehavef(α)=0tan(12)tt(1+α2t2)dt=0tan(12)dt1+α2t2=αt=u0αtan(12)duα(1+u2)=1α[arctan(u)]0αtan(12)=1αarctan(αtan(12))f(α)=1αarctan(αtan(12))dα+cbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *