calculate-0-1-x-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37893 by abdo mathsup 649 cc last updated on 19/Jun/18 calculate∫01x+x+1dx. Commented by math khazana by abdo last updated on 21/Jun/18 letx+x+1=t⇒x+x+1=t2⇒x+1=t2−x⇒x+1=(t2−x)2⇒x=t4−2xt2+x2−1⇒x2−(2t2+1)x+t4−1=0⇒Δ=(2t2+1)2−4(t4−1)=4t4+4t2+1−4t4+4=4t2+5⇒x1=2t2+1+4t2+52x2=2t2+1−4t2+52withconditiont⩾0andx⩾−1andt2−x⩾0t2−x2=t2−2t2+1−4t2+52=−1+4t2+52⩾0x2+1=2t2+1−4t2+52+1=2t2+3−4t2+52⩾0sowetakex=2t2+1−4t2+52⇒dxdt=2t−128t24t2+5=2t−2t4t2+5⇒∫01x+x+1dx=∫11+2t(2t−2t4t2+5)dt=2∫11+2t2dt−2∫11+2t24t2+5dt=2[t33]11+2−12∫11+24t2+5−54t2+5dt=2((1+2)1+2−13)−12∫11+24t2+5dt+52∫11+2dt4t2+5changement2t=5sh(x)give∫11+24t2+5dt=∫argsh(25)arsh(251+2)5ch(x)52chxdx=52∫αβ1+ch(2x)2dx=54(β−α)+58[sh(2x)]αβ=54(β−α)+58(sh(2β)−sh(2α))…. Answered by MJS last updated on 19/Jun/18 ∫x+x+1dx=[t=x+1→dx=2x+1dt]=2∫tt2+t−1dt==∫(2t+1)t2+t−1dt−∫t2+t−1dt=∫(2t+1)t2+t−1dt=[u=t2+t−1→dt=du2t+1]=∫udu=23u3=23(t2+t−1)3==23(x+x+1)3∫t2+t−1dt=∫(t+12)2−54dt==12∫(2t+1)2−5dt=[v=2t+1→dt=dv2]=14∫v2−5dv==14(12(vv2−5−5ln(v+v2−5)))==18(2t+1)(2t+1)2−5−−58ln(2t+1+(2t+1)2−5)==14(1+2x+1)x+x+1−−58ln(1+2x+1+2x+x+1)=112x+x+1(8x−3+2x+1)+58ln(1+2x+1+2x+x+1)+C Commented by prof Abdo imad last updated on 19/Jun/18 thankssirMjsyouarereallytalented. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-0-x-0-u-2-tan-1-1-t-dt-dt-x-x-cos-x-Next Next post: lim-x-0-0-x-sin-2t-4-t-2-0-x-1-t-1-dt-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.