Menu Close

calculate-0-1-x-x-1-dx-




Question Number 37893 by abdo mathsup 649 cc last updated on 19/Jun/18
calculate  ∫_0 ^1 (√(x+(√(x+1)))) dx .
calculate01x+x+1dx.
Commented by math khazana by abdo last updated on 21/Jun/18
let (√(x+(√(x+1))))  =t ⇒x+(√(x+1))=t^2  ⇒  (√(x+1))=t^2  −x ⇒x+1=(t^2 −x)^2  ⇒  x=t^4  −2xt^2  +x^2 −1 ⇒x^2  −(2t^2 +1)x +t^4 −1=0⇒  Δ =(2t^2 +1)^2  −4(t^4 −1)  =4t^4  +4t^2  +1−4t^4  +4 =4t^2  +5 ⇒  x_1 =((2t^2  +1+(√(4t^2  +5)))/2)  x_2 =((2t^2  +1−(√(4t^2 +5)))/2)  with condition t≥0 andx≥−1  and t^2 −x≥0  t^2 −x_2 =t^2  −((2t^2  +1−(√(4t^2  +5)))/2)  =((−1 +(√(4t^2 +5)))/2) ≥0  x_2 +1= ((2t^2 +1−(√(4t^2  +5)))/2) +1  =((2t^2  +3 −(√(4t^2  +5)))/2) ≥0 so we take   x=((2t^2  +1−(√(4t^2  +5)))/2) ⇒(dx/dt)=2t −(1/2)  ((8t)/(2(√(4t^2 +5))))  =2t   −((2t)/( (√(4t^2 +5)))) ⇒  ∫_0 ^1 (√(x+(√(x+1))))dx= ∫_1 ^(√(1+(√2)))   t( 2t−((2t)/( (√(4t^2 +5)))))dt  =2 ∫_1 ^(√(1+(√2))) t^2 dt  −2 ∫_1 ^(√(1+(√2)))   (t^2 /( (√(4t^2  +5))))dt  =2[(t^3 /3)]_1 ^(√(1+(√2)))   −(1/2) ∫_1 ^(√(1+(√2)))   ((4t^2  +5 −5)/( (√(4t^2 +5))))dt  =2( (1+(√2))(√(1+(√2))) −(1/3)) −(1/2) ∫_1 ^(√(1+(√2))) (√(4t^2  +5)) dt  +(5/2) ∫_1 ^(√(1+(√2)))    (dt/( (√(4t^2  +5))))  changement  2t =(√5) sh(x) give  ∫_1 ^(√(1+(√2)))   (√(4t^2  +5))dt = ∫_(argsh((2/( (√5))))) ^(arsh((2/( (√5)))(√(1+(√2)))))    (√5)ch(x)((√5)/2)chx dx  = (5/2)∫_α ^β      ((1+ch(2x))/2)dx=(5/4)(β−α) +(5/8)[sh(2x)]_α ^β   =(5/4)(β−α) +(5/8)(sh(2β)−sh(2α))....
letx+x+1=tx+x+1=t2x+1=t2xx+1=(t2x)2x=t42xt2+x21x2(2t2+1)x+t41=0Δ=(2t2+1)24(t41)=4t4+4t2+14t4+4=4t2+5x1=2t2+1+4t2+52x2=2t2+14t2+52withconditiont0andx1andt2x0t2x2=t22t2+14t2+52=1+4t2+520x2+1=2t2+14t2+52+1=2t2+34t2+520sowetakex=2t2+14t2+52dxdt=2t128t24t2+5=2t2t4t2+501x+x+1dx=11+2t(2t2t4t2+5)dt=211+2t2dt211+2t24t2+5dt=2[t33]11+21211+24t2+554t2+5dt=2((1+2)1+213)1211+24t2+5dt+5211+2dt4t2+5changement2t=5sh(x)give11+24t2+5dt=argsh(25)arsh(251+2)5ch(x)52chxdx=52αβ1+ch(2x)2dx=54(βα)+58[sh(2x)]αβ=54(βα)+58(sh(2β)sh(2α)).
Answered by MJS last updated on 19/Jun/18
∫(√(x+(√(x+1))))dx=            [t=(√(x+1)) → dx=2(√(x+1))dt]  =2∫t(√(t^2 +t−1))dt=  =∫(2t+1)(√(t^2 +t−1))dt−∫(√(t^2 +t−1))dt=              ∫(2t+1)(√(t^2 +t−1))dt=                      [u=t^2 +t−1 → dt=(du/(2t+1))]            =∫(√u)du=(2/3)(√u^3 )=(2/3)(√((t^2 +t−1)^3 ))=            =(2/3)(√((x+(√(x+1)))^3 ))              ∫(√(t^2 +t−1))dt=∫(√((t+(1/2))^2 −(5/4)))dt=            =(1/2)∫(√((2t+1)^2 −5))dt=                      [v=2t+1 → dt=(dv/2)]            =(1/4)∫(√(v^2 −5))dv=            =(1/4)((1/2)(v(√(v^2 −5))−5ln(v+(√(v^2 −5)))))=            =(1/8)(2t+1)(√((2t+1)^2 −5))−                 −(5/8)ln(2t+1+(√((2t+1)^2 −5)))=            =(1/4)(1+2(√(x+1)))(√(x+(√(x+1))))−                 −(5/8)ln(1+2(√(x+1))+2(√(x+(√(x+1)))))    =(1/(12))(√(x+(√(x+1))))(8x−3+2(√(x+1)))+(5/8)ln(1+2(√(x+1))+2(√(x+(√(x+1)))))+C
x+x+1dx=[t=x+1dx=2x+1dt]=2tt2+t1dt==(2t+1)t2+t1dtt2+t1dt=(2t+1)t2+t1dt=[u=t2+t1dt=du2t+1]=udu=23u3=23(t2+t1)3==23(x+x+1)3t2+t1dt=(t+12)254dt==12(2t+1)25dt=[v=2t+1dt=dv2]=14v25dv==14(12(vv255ln(v+v25)))==18(2t+1)(2t+1)2558ln(2t+1+(2t+1)25)==14(1+2x+1)x+x+158ln(1+2x+1+2x+x+1)=112x+x+1(8x3+2x+1)+58ln(1+2x+1+2x+x+1)+C
Commented by prof Abdo imad last updated on 19/Jun/18
thanks  sir Mjs you are really talented.
thankssirMjsyouarereallytalented.

Leave a Reply

Your email address will not be published. Required fields are marked *