Question Number 99824 by mathmax by abdo last updated on 23/Jun/20
$$\mathrm{calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{arctan}\left(\frac{\mathrm{2}}{\mathrm{x}}\right)\mathrm{dx} \\ $$
Answered by maths mind last updated on 23/Jun/20
$$=\left[−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{x}^{\mathrm{2}} } \mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{{x}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\frac{\mathrm{2}{e}^{−{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} +\mathrm{4}}\right)\right. \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−{x}^{\mathrm{2}} } }{{x}^{\mathrm{2}} +\mathrm{4}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{4}}.\left(\underset{{k}\geqslant\mathrm{0}} {\sum}\left(−\frac{{x}}{\mathrm{2}}\right)^{{k}} {e}^{−{x}^{\mathrm{2}} } \right){dx} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}+\mathrm{2}} }\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{k}} {e}^{−{x}^{\mathrm{2}} } {dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{s}} {e}^{−{x}^{\mathrm{2}} } {dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}\geqslant\mathrm{0}} {\sum}\frac{{x}^{{s}} \left(−{x}^{\mathrm{2}} \right)^{{k}} }{{k}!} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}!\left({s}+\mathrm{2}{k}+\mathrm{1}\right)}=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\mathrm{2}\left({k}+\frac{{s}+\mathrm{1}}{\mathrm{2}}\right)}.\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}!} \\ $$$$=\frac{\mathrm{1}}{{s}+\mathrm{1}}\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\frac{{s}+\mathrm{1}}{\mathrm{2}}}{\left({k}+\frac{{s}+\mathrm{1}}{\mathrm{2}}\right)}.\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}!} \\ $$$$=\frac{\mathrm{1}}{{s}+\mathrm{1}}\left(\mathrm{1}+\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\underset{{j}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\prod}}\left({j}+\frac{{s}+\mathrm{1}}{\mathrm{2}}\right)}{\underset{{j}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\prod}}\left({k}+\frac{{s}+\mathrm{3}}{\mathrm{2}}\right)}.\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}!}\right)=\frac{\mathrm{1}}{{s}+\mathrm{1}}\:\:_{\mathrm{1}} {F}_{\mathrm{1}} \left(\frac{{s}+\mathrm{1}}{\mathrm{2}};\frac{{s}+\mathrm{3}}{\mathrm{2}},−\mathrm{1}\right) \\ $$$${we}\:\:{get}\:\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}+\mathrm{2}} }.\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)}.\:_{\mathrm{1}} {F}_{\mathrm{1}} \left(\frac{{k}+\mathrm{1}}{\mathrm{2}};\frac{{k}+\mathrm{3}}{\mathrm{2}};−\mathrm{1}\right) \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 23/Jun/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{mind}. \\ $$
Commented by maths mind last updated on 23/Jun/20
$${withe}\:{pleasur} \\ $$