Menu Close

calculate-0-2-t-1-t-5-3-dt-




Question Number 35983 by abdo mathsup 649 cc last updated on 26/May/18
calculate  ∫_0 ^∞      ((2(√t) +1)/(t^5    +3))dt  .
calculate02t+1t5+3dt.
Commented by prof Abdo imad last updated on 27/May/18
let put I = ∫_0 ^∞    ((2(√t) +1)/(t^5  +3))dt changement (√t) =x  give I = ∫_0 ^∞    ((2x +1)/(x^(10)  +3))2xdx = 4 ∫_0 ^∞  (x^2 /(x^(10)  +3))dx   +2∫_0 ^∞    (x/(x^(10)  +3))dx   but changement x=3^(1/(10))  u give  ∫_0 ^∞    (x^2 /(x^(10)  +3))dx = ∫_0 ^∞   ((3^(1/5)  u^2 )/(3u^(10)  +3)) 3^(1/(10))  du  = (3^(3/(10)) /3) ∫_0 ^∞    (u^2 /(1+u^(10) ))du  then we use the chang.   u^(10)  =t ⇒u=t^(1/(10))  ⇒ ∫_0 ^∞   (u^2 /(1+u^(10) ))du   =∫_0 ^∞    (t^(1/5) /(1+t)) (1/(10))t^((1/(10))−1) dt =(1/(10))∫_0 ^∞   (t^((3/(10))−1) /(1+t))dt  =(1/(10)) (π/(sin(((3π)/(10)))))   by the same chang. we get  ∫_0 ^∞     (x/(x^(10)  +3))dx = ∫_0 ^∞   ((3^(1/(10))  u)/(3u^(10)  +3)) 3^(1/(10))  du  =(3^(1/5) /3) ∫_0 ^∞     ((u du)/(1+u^(10) ))  =3^((−4)/5)   ∫_0 ^∞    (t^(1/(10)) /(1+t)) (1/(10)) t^((1/(10))−1)  dt  = (3^(−(4/5)) /(10)) ∫_0 ^∞    (t^((2/5)−1) /(1+t))dt = (3^(−(4/5)) /(10)) (π/(sin(((2π)/5)))) ⇒  I =(4/(10)) (π/(sin(((3π)/(10))))).(3^(3/(10)) /3)  + 2 (3^(−(4/5)) /(10)) (π/(sin(((2π)/5))))  I = ((2π)/5) 3^(−(7/(10)))     (1/(sin(((3π)/(10)))))  +(π/5) 3^(−(4/5))  .(1/(sin(((2π)/5))))  I have used the formula   ∫_0 ^∞     (t^(a−1) /(1+t))dt  = (π/(sin(πa))) with 0<a<1 .
letputI=02t+1t5+3dtchangementt=xgiveI=02x+1x10+32xdx=40x2x10+3dx+20xx10+3dxbutchangementx=3110ugive0x2x10+3dx=0315u23u10+33110du=331030u21+u10duthenweusethechang.u10=tu=t1100u21+u10du=0t151+t110t1101dt=1100t31011+tdt=110πsin(3π10)bythesamechang.weget0xx10+3dx=03110u3u10+33110du=31530udu1+u10=3450t1101+t110t1101dt=345100t2511+tdt=34510πsin(2π5)I=410πsin(3π10).33103+234510πsin(2π5)I=2π537101sin(3π10)+π5345.1sin(2π5)Ihaveusedtheformula0ta11+tdt=πsin(πa)with0<a<1.

Leave a Reply

Your email address will not be published. Required fields are marked *