Menu Close

calculate-0-2pi-1-2cost-5-4cost-dt-




Question Number 35224 by abdo mathsup 649 cc last updated on 16/May/18
calculate  ∫_0 ^(2π)     ((1+2cost)/(5+4cost))dt
calculate02π1+2cost5+4costdt
Answered by MJS last updated on 17/May/18
∫((1+2cos t)/(5+4cos t))dt=             [((Weierstrass again:)),((u=tan (t/2) → dt=((2du)/(1+u^2 )); t=2arctan u)),((cos t=((1−u^2 )/(1+u^2 )); (sin t=((2u)/(1+u^2 ))))) ]  =−2∫((u^2 −3)/((u^2 +1)(u^2 +9)))du=  =−2∫(−(1/(2(u^2 +1)))+(3/(2(u^2 +9))))du=  =∫(du/(u^2 +1))−3∫(du/(u^2 +9))=            [v=(u/3) → du=3dv]  =arctan u−3∫(3/(9v^2 +9))dv=  =arctan u−∫(dv/(v^2 +1))=  =arctan u−arctan v=  =arctan u−arctan (u/3)=  =arctan(tan (t/2))−arctan ((tan (t/2))/3)=  =(t/2)−arctan((1/3)tan (t/2))    ∫_0 ^(2π) ((1+2cos t)/(5+4cos t))dt=π
1+2cost5+4costdt=[Weierstrassagain:u=tant2dt=2du1+u2;t=2arctanucost=1u21+u2;(sint=2u1+u2)]=2u23(u2+1)(u2+9)du==2(12(u2+1)+32(u2+9))du==duu2+13duu2+9=[v=u3du=3dv]=arctanu339v2+9dv==arctanudvv2+1==arctanuarctanv==arctanuarctanu3==arctan(tant2)arctantant23==t2arctan(13tant2)2π01+2cost5+4costdt=π

Leave a Reply

Your email address will not be published. Required fields are marked *