Question Number 64649 by mathmax by abdo last updated on 20/Jul/19
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{cos}\theta}{\mathrm{5}+\mathrm{3}{cos}\theta}{d}\theta \\ $$
Commented by mathmax by abdo last updated on 20/Jul/19
$${let}\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{cos}\theta}{\mathrm{5}+\mathrm{3}{cos}\theta}\:\Rightarrow{A}\:=\frac{\mathrm{1}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{\mathrm{3}{cos}\theta\:+\mathrm{5}−\mathrm{5}}{\mathrm{3}{cos}\theta\:+\mathrm{5}}{d}\theta \\ $$$$=\frac{\mathrm{2}\pi}{\mathrm{3}}\:−\frac{\mathrm{5}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{d}\theta}{\mathrm{3}{cos}\theta\:+\mathrm{5}}\:\:{changement}\:{e}^{{i}\theta} ={z}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\frac{{d}\theta}{\mathrm{3}{cos}\theta\:+\mathrm{5}}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{1}}{\mathrm{3}\:\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}+\mathrm{5}}\:\frac{{dz}}{{iz}} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\frac{\mathrm{2}{dz}}{{iz}\left(\mathrm{3}{z}+\mathrm{3}{z}^{−\mathrm{1}} \:+\mathrm{10}\right)}\:=\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{−\mathrm{2}{i}}{\mathrm{3}{z}^{\mathrm{2}} \:+\mathrm{3}\:+\mathrm{10}{z}}{dz}\:{let} \\ $$$${W}\left({z}\right)\:=\frac{−\mathrm{2}{i}}{\mathrm{3}{z}^{\mathrm{2}} \:+\mathrm{10}{z}\:+\mathrm{3}}\:\:{poles}\:{of}\:{W}? \\ $$$$\Delta^{'} =\mathrm{5}^{\mathrm{2}} −\mathrm{9}\:=\mathrm{16}\:\Rightarrow{z}_{\mathrm{1}} =\frac{−\mathrm{5}\:+\mathrm{4}}{\mathrm{3}}\:=−\frac{\mathrm{1}}{\mathrm{3}}\:\:{and}\:{z}_{\mathrm{2}} =\frac{−\mathrm{5}−\mathrm{4}}{\mathrm{3}}\:=−\mathrm{3}\:\Rightarrow \\ $$$${W}\left({z}\right)\:=\frac{−\mathrm{2}{i}}{\mathrm{3}\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}\:\:\:\:\:\left({z}_{\mathrm{2}} {is}\:{out}\:{of}\:{circle}\right)\:{residus}\:{theorem}\:{give} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} {W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},{z}_{\mathrm{1}} \right) \\ $$$${Res}\left({W},{z}_{\mathrm{1}} \right)\:={lim}_{{z}\rightarrow{z}_{\mathrm{1}} } \left({z}−{z}_{\mathrm{1}} \right){W}\left({z}\right)\:=\frac{−\mathrm{2}{i}}{\mathrm{3}\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)}\:=\frac{−\mathrm{2}{i}}{\mathrm{3}\left(−\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{3}\right)} \\ $$$$=\frac{−\mathrm{2}{i}}{\mathrm{3}.\frac{\mathrm{8}}{\mathrm{3}}}\:=−\frac{{i}}{\mathrm{4}}\:\Rightarrow\int_{\mid{z}\mid=\mathrm{1}} {W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left(−\frac{{i}}{\mathrm{4}}\right)\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow \\ $$$${A}\:=\frac{\mathrm{2}\pi}{\mathrm{3}}\:−\frac{\mathrm{5}}{\mathrm{3}}\:\frac{\pi}{\mathrm{2}}\:=\frac{\mathrm{2}\pi}{\mathrm{3}}−\frac{\mathrm{5}\pi}{\mathrm{6}}\:=\frac{\mathrm{4}\pi−\mathrm{5}\pi}{\mathrm{6}}\:\Rightarrow\:{A}\:=−\frac{\pi}{\mathrm{6}}\:. \\ $$$$ \\ $$
Answered by MJS last updated on 20/Jul/19
$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{\mathrm{cos}\:\theta}{\mathrm{5}+\mathrm{3cos}\:\theta}{d}\theta=\mathrm{2}\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{\mathrm{cos}\:\theta}{\mathrm{5}+\mathrm{3cos}\:\theta}{d}\theta= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\:\rightarrow\:{d}\theta=\mathrm{2cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\:{dt}\right] \\ $$$$−\mathrm{2}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{4}\right)}{dt}=\frac{\mathrm{4}}{\mathrm{3}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{10}}{\mathrm{3}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{4}}= \\ $$$$=\left[\frac{\mathrm{4}}{\mathrm{3}}\mathrm{arctan}\:{t}\:−\frac{\mathrm{5}}{\mathrm{3}}\mathrm{arctan}\:\frac{{t}}{\mathrm{2}}\right]_{\mathrm{0}} ^{\infty} =−\frac{\pi}{\mathrm{6}} \\ $$
Commented by mathmax by abdo last updated on 20/Jul/19
$${thank}\:{you}\:{sir}. \\ $$