Menu Close

calculate-0-2pi-d-1-cos-3-




Question Number 42232 by maxmathsup by imad last updated on 20/Aug/18
calculate  ∫_0 ^(2π)    (dθ/((1+cosθ)^3 ))
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{d}\theta}{\left(\mathrm{1}+{cos}\theta\right)^{\mathrm{3}} } \\ $$
Answered by MJS last updated on 21/Aug/18
simply Weierstrass  t=tan (θ/2) → dθ=((2td)/(t^2 +1))  ∫(dθ/((1+cos θ)^3 ))=(1/4)∫(t^2 +1)^2 dt=  =(1/4)∫t^4 dt+(1/2)∫t^2 dt+(1/4)∫dt=  =(1/(20))t^5 +(1/6)t^3 +(1/4)t=(((3t^4 +10t^2 +15)t)/(60))=  =(((3tan^4  (x/2) +10tan^2  (x/2) +15)tan (x/2))/(60))+C
$$\mathrm{simply}\:\mathrm{Weierstrass} \\ $$$${t}=\mathrm{tan}\:\frac{\theta}{\mathrm{2}}\:\rightarrow\:{d}\theta=\frac{\mathrm{2}{td}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\int\frac{{d}\theta}{\left(\mathrm{1}+\mathrm{cos}\:\theta\right)^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{4}}\int\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} {dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int{t}^{\mathrm{4}} {dt}+\frac{\mathrm{1}}{\mathrm{2}}\int{t}^{\mathrm{2}} {dt}+\frac{\mathrm{1}}{\mathrm{4}}\int{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{20}}{t}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{6}}{t}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{4}}{t}=\frac{\left(\mathrm{3}{t}^{\mathrm{4}} +\mathrm{10}{t}^{\mathrm{2}} +\mathrm{15}\right){t}}{\mathrm{60}}= \\ $$$$=\frac{\left(\mathrm{3tan}^{\mathrm{4}} \:\frac{{x}}{\mathrm{2}}\:+\mathrm{10tan}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}\:+\mathrm{15}\right)\mathrm{tan}\:\frac{{x}}{\mathrm{2}}}{\mathrm{60}}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *