Menu Close

calculate-0-2pi-d-2-cos-2-




Question Number 36200 by prof Abdo imad last updated on 30/May/18
calculate  ∫_0 ^(2π)     (dθ/((2+cosθ)^2 ))
calculate02πdθ(2+cosθ)2
Commented by prof Abdo imad last updated on 31/May/18
letut  I = ∫_0 ^(2π)    (dθ/((2+cosθ)^2 ))  I = ∫_0 ^π    (dθ/((2 +cosθ)^2 ))  + ∫_π ^(2π)    (dθ/((2+cosθ)^2 )) =I_1  + I_2   changement tan((θ/2))=t give  I_1  = ∫_0 ^∞      (1/((2 + ((1−t^2 )/(1+t^2 )))^2 )) ((2dt)/(1+t^2 ))  = 2 ∫_0 ^∞        (dt/((1+t^2 )(((2 +2t^2  +1−t^2 )/(1+t^2 )))^2 ))  = 2 ∫_0 ^∞      (((1+t^2 )^2 )/((1+t^2 )( 3+t^2 )^2 ))dt  = 2 ∫_0 ^∞     ((t^2  +1)/(( t^2  +3)^2 ))dt =∫_(−∞) ^(+∞)   ((t^2  +1)/((t^2  +3)^2 ))dt let  consider the complex function  ϕ(z) = ((z^2  +1)/((z^2 +3)^2 ))  ϕ(z) = ((z^2  +1)/((z−i(√3))^2 (z +i(√3))^2 )) the poles of ϕ are  i(√3)  and −i(√3)(doubles) Residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i(√3))  Res(ϕ,i(√3)) =lim_(z→i(√3))   (1/((2−1)!)){ (z−i(√3))^2 ϕ(z)}^((1))   =lim_(z→i(√3))   { ((z^2  +1)/((z +i(√3))^2 ))}^((1))   lim_(z→i(√3) )  { ((2z(z +i(√3))^2  −(z^2  +1)2(z+i(√3)))/((z +i(√3))^4 ))}  =lim_(z→i(√3))   {  ((2z(z +i(√3)) −2(z^2  +1))/((z +i(√3))^3 ))}  =lim_(z→i(√3))   { ((2z^2   + 2iz (√3) −2z^2  −2)/((z+i(√3))^3 ))}  = ((2i(i(√3))(√3) −2)/((2i(√3))^3 )) = ((−8)/(−8i3(√3))) = (1/(i3(√3)))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (1/(i3(√3))) = ((2π)/(3(√3))) = I_1
letutI=02πdθ(2+cosθ)2I=0πdθ(2+cosθ)2+π2πdθ(2+cosθ)2=I1+I2changementtan(θ2)=tgiveI1=01(2+1t21+t2)22dt1+t2=20dt(1+t2)(2+2t2+1t21+t2)2=20(1+t2)2(1+t2)(3+t2)2dt=20t2+1(t2+3)2dt=+t2+1(t2+3)2dtletconsiderthecomplexfunctionφ(z)=z2+1(z2+3)2φ(z)=z2+1(zi3)2(z+i3)2thepolesofφarei3andi3(doubles)Residustheoremgive+φ(z)dz=2iπRes(φ,i3)Res(φ,i3)=limzi31(21)!{(zi3)2φ(z)}(1)=limzi3{z2+1(z+i3)2}(1)limzi3{2z(z+i3)2(z2+1)2(z+i3)(z+i3)4}=limzi3{2z(z+i3)2(z2+1)(z+i3)3}=limzi3{2z2+2iz32z22(z+i3)3}=2i(i3)32(2i3)3=88i33=1i33+φ(z)dz=2iπ1i33=2π33=I1
Commented by abdo.msup.com last updated on 31/May/18
I_2 =∫_π ^(2π)   (dθ/((2+cosθ)^2 ))  =_(θ =π+t)  ∫_0 ^π     (dt/((2−cost)^2 ))  =_(tan((t/2))=x)  ∫_0 ^(+∞)      (1/((2−((1−x^2 )/(1+x^2 )))^2 )) ((2dx)/(1+x^2 ))  = 2∫_0 ^(+∞)    (dx/((1+x^2 ){((2+2x^2  −1+x^2 )/(1+x^2 ))}^2 ))  = ∫_(−∞) ^(+∞)      ((1+x^2 )/((3x^2  +1)^2 ))dx  let consider  the complex function  ϕ(z) = ((z^2  +1)/((3z^2  +1)^2 ))  ϕ(z) = ((z^2  +1)/(9( z −(i/( (√3))))(z+(i/( (√3)))))) the poles of  ϕ are (i/( (√3)))  and ((−i)/( (√3)))(double)  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,(i/( (√3))))  Res(ϕ,(i/( (√3))))=lim_(z→(i/( (√3))))  (1/((2−1)!)){ (z−(i/( (√3))))ϕ(z)}^((1))   ...be continued...
I2=π2πdθ(2+cosθ)2=θ=π+t0πdt(2cost)2=tan(t2)=x0+1(21x21+x2)22dx1+x2=20+dx(1+x2){2+2x21+x21+x2}2=+1+x2(3x2+1)2dxletconsiderthecomplexfunctionφ(z)=z2+1(3z2+1)2φ(z)=z2+19(zi3)(z+i3)thepolesofφarei3andi3(double)+φ(z)dz=2iπRes(φ,i3)Res(φ,i3)=limzi31(21)!{(zi3)φ(z)}(1)becontinued
Commented by prof Abdo imad last updated on 01/Jun/18
Res(ϕ,(i/( (√3)))) =lim_(z→(i/( (√3))))   {  ((z^2  +1)/(9(z +(i/( (√3))))^2 ))}^((1))   =(1/9){ ((2z(z+(i/( (√3))))^2  −(z^2  +1)2(z +(i/( (√3)))))/((z +(i/( (√3))))^4 ))}  =lim_(z→(i/( (√3)))) (1/9){ ((2z(z +(i/( (√3)))) −2(z^2  +1))/((z +(i/( (√3))))^3 ))}  =lim_(z→(i/( (√3)))) (1/9){ (((2/( (√3)))iz −2)/((z +(i/( (√3))))^3 ))}  = (2/9) ((((i/( (√3)))(i/( (√3))) −1)/((((2i)/( (√3))))^3 )))= (2/9)  (4/(3 (8/(3(√3)))i)) =  ((√3)/(9i))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((√3)/(9i)) = ((2π(√3))/9) =I_2   I = I_1  +I_2
Res(φ,i3)=limzi3{z2+19(z+i3)2}(1)=19{2z(z+i3)2(z2+1)2(z+i3)(z+i3)4}=limzi319{2z(z+i3)2(z2+1)(z+i3)3}=limzi319{23iz2(z+i3)3}=29(i3i31(2i3)3)=2943833i=39i+φ(z)dz=2iπ39i=2π39=I2I=I1+I2
Commented by prof Abdo imad last updated on 01/Jun/18
I = ((2π)/(3(√3)))  + ((2π(√3))/9) = ((2π(√3))/9) +((2π(√3))/9) ⇒  I = ((4π(√3))/9) .
I=2π33+2π39=2π39+2π39I=4π39.

Leave a Reply

Your email address will not be published. Required fields are marked *