Question Number 36200 by prof Abdo imad last updated on 30/May/18
$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{{d}\theta}{\left(\mathrm{2}+{cos}\theta\right)^{\mathrm{2}} } \\ $$
Commented by prof Abdo imad last updated on 31/May/18
$${letut}\:\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\frac{{d}\theta}{\left(\mathrm{2}+{cos}\theta\right)^{\mathrm{2}} } \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{d}\theta}{\left(\mathrm{2}\:+{cos}\theta\right)^{\mathrm{2}} }\:\:+\:\int_{\pi} ^{\mathrm{2}\pi} \:\:\:\frac{{d}\theta}{\left(\mathrm{2}+{cos}\theta\right)^{\mathrm{2}} }\:={I}_{\mathrm{1}} \:+\:{I}_{\mathrm{2}} \\ $$$${changement}\:{tan}\left(\frac{\theta}{\mathrm{2}}\right)={t}\:{give} \\ $$$${I}_{\mathrm{1}} \:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}\:+\:\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)^{\mathrm{2}} }\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\frac{\mathrm{2}\:+\mathrm{2}{t}^{\mathrm{2}} \:+\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$$$=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\:\mathrm{3}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$=\:\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\mathrm{2}} \:+\mathrm{1}}{\left(\:{t}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dt}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{t}^{\mathrm{2}} \:+\mathrm{1}}{\left({t}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }{dt}\:{let} \\ $$$${consider}\:{the}\:{complex}\:{function} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{z}^{\mathrm{2}} \:+\mathrm{1}}{\left({z}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} } \\ $$$$\varphi\left({z}\right)\:=\:\frac{{z}^{\mathrm{2}} \:+\mathrm{1}}{\left({z}−{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \left({z}\:+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\:{the}\:{poles}\:{of}\:\varphi\:{are} \\ $$$${i}\sqrt{\mathrm{3}}\:\:{and}\:−{i}\sqrt{\mathrm{3}}\left({doubles}\right)\:{Residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right) \\ $$$${Res}\left(\varphi,{i}\sqrt{\mathrm{3}}\right)\:={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\:\left({z}−{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\left\{\:\frac{{z}^{\mathrm{2}} \:+\mathrm{1}}{\left({z}\:+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$${lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}\:} \:\left\{\:\frac{\mathrm{2}{z}\left({z}\:+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:−\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)\mathrm{2}\left({z}+{i}\sqrt{\mathrm{3}}\right)}{\left({z}\:+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{4}} }\right\} \\ $$$$={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\left\{\:\:\frac{\mathrm{2}{z}\left({z}\:+{i}\sqrt{\mathrm{3}}\right)\:−\mathrm{2}\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)}{\left({z}\:+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }\right\} \\ $$$$={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\left\{\:\frac{\mathrm{2}{z}^{\mathrm{2}} \:\:+\:\mathrm{2}{iz}\:\sqrt{\mathrm{3}}\:−\mathrm{2}{z}^{\mathrm{2}} \:−\mathrm{2}}{\left({z}+{i}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }\right\} \\ $$$$=\:\frac{\mathrm{2}{i}\left({i}\sqrt{\mathrm{3}}\right)\sqrt{\mathrm{3}}\:−\mathrm{2}}{\left(\mathrm{2}{i}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }\:=\:\frac{−\mathrm{8}}{−\mathrm{8}{i}\mathrm{3}\sqrt{\mathrm{3}}}\:=\:\frac{\mathrm{1}}{{i}\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{\mathrm{1}}{{i}\mathrm{3}\sqrt{\mathrm{3}}}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:=\:{I}_{\mathrm{1}} \\ $$$$ \\ $$
Commented by abdo.msup.com last updated on 31/May/18
$${I}_{\mathrm{2}} =\int_{\pi} ^{\mathrm{2}\pi} \:\:\frac{{d}\theta}{\left(\mathrm{2}+{cos}\theta\right)^{\mathrm{2}} } \\ $$$$=_{\theta\:=\pi+{t}} \:\int_{\mathrm{0}} ^{\pi} \:\:\:\:\frac{{dt}}{\left(\mathrm{2}−{cost}\right)^{\mathrm{2}} } \\ $$$$=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={x}} \:\int_{\mathrm{0}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }\:\frac{\mathrm{2}{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\:\mathrm{2}\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left\{\frac{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} \:−\mathrm{1}+{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }\right\}^{\mathrm{2}} } \\ $$$$=\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{\mathrm{1}+{x}^{\mathrm{2}} }{\left(\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\:{let}\:{consider} \\ $$$${the}\:{complex}\:{function} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{z}^{\mathrm{2}} \:+\mathrm{1}}{\left(\mathrm{3}{z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\varphi\left({z}\right)\:=\:\frac{{z}^{\mathrm{2}} \:+\mathrm{1}}{\mathrm{9}\left(\:{z}\:−\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)\left({z}+\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)}\:{the}\:{poles}\:{of} \\ $$$$\varphi\:{are}\:\frac{{i}}{\:\sqrt{\mathrm{3}}}\:\:{and}\:\frac{−{i}}{\:\sqrt{\mathrm{3}}}\left({double}\right) \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\frac{{i}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$${Res}\left(\varphi,\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)={lim}_{{z}\rightarrow\frac{{i}}{\:\sqrt{\mathrm{3}}}} \:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\:\left({z}−\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)\varphi\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$…{be}\:{continued}… \\ $$
Commented by prof Abdo imad last updated on 01/Jun/18
$${Res}\left(\varphi,\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)\:={lim}_{{z}\rightarrow\frac{{i}}{\:\sqrt{\mathrm{3}}}} \:\:\left\{\:\:\frac{{z}^{\mathrm{2}} \:+\mathrm{1}}{\mathrm{9}\left({z}\:+\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{9}}\left\{\:\frac{\mathrm{2}{z}\left({z}+\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} \:−\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)\mathrm{2}\left({z}\:+\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)}{\left({z}\:+\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{4}} }\right\} \\ $$$$={lim}_{{z}\rightarrow\frac{{i}}{\:\sqrt{\mathrm{3}}}} \frac{\mathrm{1}}{\mathrm{9}}\left\{\:\frac{\mathrm{2}{z}\left({z}\:+\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)\:−\mathrm{2}\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)}{\left({z}\:+\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{3}} }\right\} \\ $$$$={lim}_{{z}\rightarrow\frac{{i}}{\:\sqrt{\mathrm{3}}}} \frac{\mathrm{1}}{\mathrm{9}}\left\{\:\frac{\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}{iz}\:−\mathrm{2}}{\left({z}\:+\frac{{i}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{3}} }\right\} \\ $$$$=\:\frac{\mathrm{2}}{\mathrm{9}}\:\left(\frac{\frac{{i}}{\:\sqrt{\mathrm{3}}}\frac{{i}}{\:\sqrt{\mathrm{3}}}\:−\mathrm{1}}{\left(\frac{\mathrm{2}{i}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{3}} }\right)=\:\frac{\mathrm{2}}{\mathrm{9}}\:\:\frac{\mathrm{4}}{\mathrm{3}\:\frac{\mathrm{8}}{\mathrm{3}\sqrt{\mathrm{3}}}{i}}\:=\:\:\frac{\sqrt{\mathrm{3}}}{\mathrm{9}{i}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{\sqrt{\mathrm{3}}}{\mathrm{9}{i}}\:=\:\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:={I}_{\mathrm{2}} \\ $$$${I}\:=\:{I}_{\mathrm{1}} \:+{I}_{\mathrm{2}} \: \\ $$
Commented by prof Abdo imad last updated on 01/Jun/18
$${I}\:=\:\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:\:+\:\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:=\:\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:+\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:\Rightarrow \\ $$$${I}\:=\:\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:. \\ $$