Question Number 37349 by math khazana by abdo last updated on 12/Jun/18
$${calculate}\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{{dt}}{\mathrm{1}−\mathrm{2}{pcost}\:+{p}^{\mathrm{2}} }\:\:{if}\:\mid{p}\mid<\mathrm{1} \\ $$
Commented by math khazana by abdo last updated on 13/Jun/18
$${changement}\:{e}^{{it}} \:={z}\:{give}\: \\ $$$${I}\:\:=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{2}{p}\:\frac{{z}+{z}^{−\mathrm{1}} }{\mathrm{2}}\:+{p}^{\mathrm{2}} }\:\frac{{dz}}{{iz}} \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\:\:\frac{−{idz}}{{z}\left(\mathrm{1}+{p}^{\mathrm{2}} \:−{pz}\:−{pz}^{−\mathrm{1}} \right)} \\ $$$$=\int_{\mid{z}\mid\:=\mathrm{1}} \:\:\:\:\:\frac{−{idz}}{\left(\mathrm{1}+{p}^{\mathrm{2}} \right){z}\:−{pz}^{\mathrm{2}} \:−{p}}\: \\ $$$$=\:\int_{\mid{z}\mid=\mathrm{1}} \:\:\:\frac{{idz}}{{pz}^{\mathrm{2}} \:−\left(\mathrm{1}+{p}^{\mathrm{2}} \right){z}\:+{p}}\:\:{let}\:{consider}\:{the} \\ $$$${complex}\:{function}\:\varphi\left({z}\right)\:=\:\frac{{i}}{{pz}^{\mathrm{2}} \:−\left(\mathrm{1}+{p}^{\mathrm{2}} \right){z}\:+{p}} \\ $$$${poles}\:{of}\:\varphi? \\ $$$$\Delta\:=\left(\mathrm{1}+{p}^{\mathrm{2}} \right)^{\mathrm{2}} \:−\mathrm{4}{p}^{\mathrm{2}} \:=\:\mathrm{1}\:+\mathrm{2}{p}^{\mathrm{2}} \:+{p}^{\mathrm{4}} \:−\mathrm{4}{p}^{\mathrm{2}} \\ $$$$={p}^{\mathrm{4}} \:+\mathrm{1}−\mathrm{2}{p}^{\mathrm{2}} \:=\left({p}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \\ $$$${z}_{\mathrm{1}} =\:\frac{\mathrm{1}+{p}^{\mathrm{2}} \:+\mid{p}^{\mathrm{2}} −\mathrm{1}\mid}{\mathrm{2}{p}}\:=\:\frac{\mathrm{1}+{p}^{\mathrm{2}} \:+\mathrm{1}−{p}^{\mathrm{2}} }{\mathrm{2}{p}}\:=\frac{\mathrm{1}}{{p}} \\ $$$${z}_{\mathrm{2}} =\frac{\mathrm{1}+{p}^{\mathrm{2}} −\mid{p}^{\mathrm{2}} −\mathrm{1}\mid}{\mathrm{2}{p}}\:=\frac{\mathrm{1}+{p}^{\mathrm{2}} \:−\mathrm{1}+{p}^{\mathrm{2}} }{\mathrm{2}{p}}\:={p} \\ $$$$\mid{z}_{\mathrm{1}} \mid=\:\frac{\mathrm{1}}{\mid{p}\mid}\:>\mathrm{1}\:\:{because}\:\mid{p}\mid<\mathrm{1}\:{and}?{we}\:{suppose}\:{that} \\ $$$${p}\neq\mathrm{0} \\ $$$$\mid{z}_{\mathrm{2}} \mid\:=\mid{p}\mid<\mathrm{1}\:\:{so} \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{z}_{\mathrm{2}} \right)\:\:{but}\:{we}\:{have} \\ $$$$\varphi\left({z}\right)=\:\:\frac{{i}}{{p}\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}\:\Rightarrow \\ $$$${Res}\left(\varphi,{z}_{\mathrm{2}} \right)\:={lim}_{{z}\rightarrow{z}_{\mathrm{2}} } \left({z}−{z}_{\mathrm{2}} \right)\varphi\left({z}\right) \\ $$$$=\:\frac{{i}}{{p}\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)}\:=\:\frac{{i}}{{p}\left({p}−\frac{\mathrm{1}}{{p}}\right)}\:=\:\frac{{i}}{\left({p}^{\mathrm{2}} −\mathrm{1}\right)}\:\Rightarrow \\ $$$$\int_{\mid{z}\mid=\mathrm{1}} \varphi\left({z}\right){dz}\:=\:\mathrm{2}{i}\pi\:\frac{{i}}{{p}^{\mathrm{2}} −\mathrm{1}}\:=\frac{−\mathrm{2}\pi}{{p}^{\mathrm{2}} −\mathrm{1}}\:=\frac{\mathrm{2}\pi}{\mathrm{1}−{p}^{\mathrm{2}} } \\ $$$${I}\:=\:\frac{\mathrm{2}\pi}{\mathrm{1}−{p}^{\mathrm{2}} } \\ $$$${if}\:{p}=\mathrm{0}\:\:{I}\:\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:{dt}\:=\mathrm{2}\pi\:. \\ $$$$ \\ $$