Menu Close

calculate-0-2pi-dt-1-2pcost-p-2-if-p-lt-1-




Question Number 37349 by math khazana by abdo last updated on 12/Jun/18
calculate   ∫_0 ^(2π)     (dt/(1−2pcost +p^2 ))  if ∣p∣<1
calculate02πdt12pcost+p2ifp∣<1
Commented by math khazana by abdo last updated on 13/Jun/18
changement e^(it)  =z give   I  = ∫_(∣z∣=1)      (1/(1−2p ((z+z^(−1) )/2) +p^2 )) (dz/(iz))  = ∫_(∣z∣=1)      ((−idz)/(z(1+p^2  −pz −pz^(−1) )))  =∫_(∣z∣ =1)      ((−idz)/((1+p^2 )z −pz^2  −p))   = ∫_(∣z∣=1)    ((idz)/(pz^2  −(1+p^2 )z +p))  let consider the  complex function ϕ(z) = (i/(pz^2  −(1+p^2 )z +p))  poles of ϕ?  Δ =(1+p^2 )^2  −4p^2  = 1 +2p^2  +p^4  −4p^2   =p^4  +1−2p^2  =(p^2 −1)^2   z_1 = ((1+p^2  +∣p^2 −1∣)/(2p)) = ((1+p^2  +1−p^2 )/(2p)) =(1/p)  z_2 =((1+p^2 −∣p^2 −1∣)/(2p)) =((1+p^2  −1+p^2 )/(2p)) =p  ∣z_1 ∣= (1/(∣p∣)) >1  because ∣p∣<1 and?we suppose that  p≠0  ∣z_2 ∣ =∣p∣<1  so  ∫_(∣z∣=1)  ϕ(z)dz =2iπ Res(ϕ,z_2 )  but we have  ϕ(z)=  (i/(p(z−z_1 )(z−z_2 ))) ⇒  Res(ϕ,z_2 ) =lim_(z→z_2 ) (z−z_2 )ϕ(z)  = (i/(p(z_2 −z_1 ))) = (i/(p(p−(1/p)))) = (i/((p^2 −1))) ⇒  ∫_(∣z∣=1) ϕ(z)dz = 2iπ (i/(p^2 −1)) =((−2π)/(p^2 −1)) =((2π)/(1−p^2 ))  I = ((2π)/(1−p^2 ))  if p=0  I  = ∫_0 ^(2π)   dt =2π .
changementeit=zgiveI=z∣=1112pz+z12+p2dziz=z∣=1idzz(1+p2pzpz1)=z=1idz(1+p2)zpz2p=z∣=1idzpz2(1+p2)z+pletconsiderthecomplexfunctionφ(z)=ipz2(1+p2)z+ppolesofφ?Δ=(1+p2)24p2=1+2p2+p44p2=p4+12p2=(p21)2z1=1+p2+p212p=1+p2+1p22p=1pz2=1+p2p212p=1+p21+p22p=pz1∣=1p>1becausep∣<1and?wesupposethatp0z2=∣p∣<1soz∣=1φ(z)dz=2iπRes(φ,z2)butwehaveφ(z)=ip(zz1)(zz2)Res(φ,z2)=limzz2(zz2)φ(z)=ip(z2z1)=ip(p1p)=i(p21)z∣=1φ(z)dz=2iπip21=2πp21=2π1p2I=2π1p2ifp=0I=02πdt=2π.

Leave a Reply

Your email address will not be published. Required fields are marked *