Menu Close

calculate-0-2pi-dt-p-cost-with-p-gt-1-




Question Number 37348 by math khazana by abdo last updated on 12/Jun/18
calculate ∫_0 ^(2π)      (dt/(p +cost))  with p>1
calculate02πdtp+costwithp>1
Commented by prof Abdo imad last updated on 13/Jun/18
I = ∫_0 ^π   (dt/(p+cost)) + ∫_π ^(2π)   (dt/(p +cost)) =K +H  changement tan((t/2))=x give   K = ∫_0 ^∞    (1/(p +((1−x^2 )/(1+x^2 ))))  ((2dx)/(1+x^2 )) =2 ∫_0 ^∞    (dx/(p+px^2  +1−x^2 ))  = 2 ∫_0 ^∞      (dx/(p+1 +(p−1)x^2 )) =(2/(p+1))∫_0 ^∞    (dx/(1+((p−1)/(p+1))x^2 ))  chang.(√((p−1)/(p+1))) x=u give  K = (2/(p+1)) ∫_0 ^(+∞)      (1/(1+u^2 )) (√((p+1)/(p−1)))du  = (2/( (√(p^2 −1)))) .(π/2) = (π/( (√(p^2 −1)))) .  changement t=π +x give  H = ∫_0 ^π       (dx/(p−cosx)) =_(tan((x/2))=t)  ∫_0 ^∞     (1/(p−((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫_0 ^∞     ((2dt)/(p +pt^2  −1+t^2 )) = _(x→0)   =∫_0 ^∞    ((2dt)/(p−1 +(p+1)t^2 ))  =(2/(p−1)) ∫_0 ^∞     (dt/(1+((p+1)/(p−1))t^2 ))  =_((√((p+1)/(p−1))) t=u)     (2/(p−1)) ∫_0 ^∞      (1/(1+u^2 )) (√((p−1)/(p+1))) du  = (2/( (√(p^2 −1)))) .(π/2)  = (π/( (√(p^2 −1)))) ⇒  I =  (π/( (√(p^2  −1)))) +(π/( (√(p^2 −1))))   I =((2π)/( (√(p^2 −1))))   with p>1 .
I=0πdtp+cost+π2πdtp+cost=K+Hchangementtan(t2)=xgiveK=01p+1x21+x22dx1+x2=20dxp+px2+1x2=20dxp+1+(p1)x2=2p+10dx1+p1p+1x2chang.p1p+1x=ugiveK=2p+10+11+u2p+1p1du=2p21.π2=πp21.changementt=π+xgiveH=0πdxpcosx=tan(x2)=t01p1t21+t22dt1+t2=02dtp+pt21+t2=x0=02dtp1+(p+1)t2=2p10dt1+p+1p1t2=p+1p1t=u2p1011+u2p1p+1du=2p21.π2=πp21I=πp21+πp21I=2πp21withp>1.
Commented by prof Abdo imad last updated on 13/Jun/18
Residus method  changement e^(it) =z give  I =∫_(∣z∣=1)     (1/(p +((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)   ((−2idz)/(z(2p +z+z^(−1) ))) = ∫_(∣z∣=1)   ((−2idz)/(2pz +z^2  +1))  =∫_(∣z∣=1)   ((−2idz)/(z^2  +2pz +1))  let ϕ(z) = ((−2i)/(z^2  +2pz +1))  poles of ϕ?  Δ^′  =p^2  −1 ⇒ z_1 =−p +(√(p^2 −1))  z_2 =−p−(√(p^2 −1))  ∣z_1 ∣−1 =p−(√(p^2 −1)) −1 =p−1 −(√(p^2 −1))  (p−1)^2  −(p^2 −1) =p^2  −2p +1 −p^2  +1   =−2p+2 =−2(p−1)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1 =p +(√(p^2 −1))−1>0 (to eliminate from  Residus)  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ ,z_1 )     Res(ϕ,z_1 ) =((−2i)/(z_1 −z_2 )) = ((−2i)/(2(√(p^2 −1)))) = ((−i)/( (√(p^2 −1))))  ∫_(∣z∣=1)  ϕ(z)dz =2iπ(((−i)/( (√(p^2 −1)))))  = ((2π)/( (√(p^2 −1)))) ⇒  ★  I  =  ((2π)/( (√(p^2  −1)))) ★
Residusmethodchangementeit=zgiveI=z∣=11p+z+z12dziz=z∣=12idzz(2p+z+z1)=z∣=12idz2pz+z2+1=z∣=12idzz2+2pz+1letφ(z)=2iz2+2pz+1polesofφ?Δ=p21z1=p+p21z2=pp21z11=pp211=p1p21(p1)2(p21)=p22p+1p2+1=2p+2=2(p1)<0⇒∣z1∣<1z21=p+p211>0(toeliminatefromResidus)z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=2iz1z2=2i2p21=ip21z∣=1φ(z)dz=2iπ(ip21)=2πp21I=2πp21

Leave a Reply

Your email address will not be published. Required fields are marked *