Menu Close

calculate-0-2pi-dt-x-e-it-




Question Number 32343 by abdo imad last updated on 23/Mar/18
calculate  ∫_0 ^(2π)     (dt/(x−e^(it) ))  .
calculate02πdtxeit.
Commented by abdo imad last updated on 28/Mar/18
let put I(x) = ∫_0 ^(2π)   (dt/(x−e^(it) )) let suppose x≠0  I(x) = (1/x) ∫_0 ^(2π)   (dt/(1−x^(−1)  e^(it) ))  case 1  ∣x^(−1) e^(it) ∣ <1  ⇔ ∣x∣>1⇒  x I(x) = ∫_0 ^(2π)  ( Σ_(n=0) ^∞  x^(−n)  e^(int) )dt  =Σ_(n=0) ^∞  x^(−n)  ∫_0 ^(2π)  e^(int) dt  =2π  +Σ_(n=1) ^∞  x^(−n) [(1/(in)) e^(int) ]_0 ^(2π)  =2π +0  =2π ⇒ I(x) =((2π)/x) .  case 2 ∣x^(−1) e^(it) ∣>1 ⇔ ∣x∣<1  the ch.x=(1/α) ⇒∣α∣>1  I(x) =I((1/α)) = ∫_0 ^(2π)    (dt/((1/α) −e^(it) )) = α ∫_0 ^(2π)   (dt/(1−α e^(it) ))  I(x) =∫_0 ^(2π)     (dt/(x −cost −isint))dt  = ∫_0 ^(2π)   ((x−cost +isint)/((x−cost)^2  +sin^2 t))dt  = ∫_0 ^(2π)    ((x−cost)/((x−cost)^2  +sin^2 t))dt  +i ∫_0 ^(2π)   ((sint)/((x−cost)^2  +sin^2 t))dt  =_(t=π +u)    ∫_(−π) ^π    ((x +cosu)/((x+cosu)^2  +sin^2 u))du −i ∫_(−π) ^π     ((sinu)/((x +cosu)^2  +sin^2 u))du  = 2 ∫_0 ^π    ((x +cosu)/(x^2  +2x cosu +1))du +0 .ch tan((u/2)) =t give  I(x) = 2 ∫_0 ^(+∞)    ((x +((1−t^2 )/(1+t^2 )))/(x^2  +2x ((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = 4∫_0 ^(+∞)    ((x(1+t^2 ) +1−t^2 )/(x^2 (1+t^2 ) +2x(1−t^2 ))) dt  =4 ∫_0 ^(+∞)     ((x+1 +(x−1)t^2 )/((x^2  +2x +(x^2  −2x)t^2 )(1+t^2 )))dt  =(4/x) ∫_0 ^(+∞)   (((x−1)t^2  +x+1)/((x+2 +(x−2)t^2 )(1+t^2 )))dt ....be continued....
letputI(x)=02πdtxeitletsupposex0I(x)=1x02πdt1x1eitcase1x1eit<1x∣>1xI(x)=02π(n=0xneint)dt=n=0xn02πeintdt=2π+n=1xn[1ineint]02π=2π+0=2πI(x)=2πx.case2x1eit∣>1x∣<1thech.x=1α⇒∣α∣>1I(x)=I(1α)=02πdt1αeit=α02πdt1αeitI(x)=02πdtxcostisintdt=02πxcost+isint(xcost)2+sin2tdt=02πxcost(xcost)2+sin2tdt+i02πsint(xcost)2+sin2tdt=t=π+uππx+cosu(x+cosu)2+sin2uduiππsinu(x+cosu)2+sin2udu=20πx+cosux2+2xcosu+1du+0.chtan(u2)=tgiveI(x)=20+x+1t21+t2x2+2x1t21+t22dt1+t2=40+x(1+t2)+1t2x2(1+t2)+2x(1t2)dt=40+x+1+(x1)t2(x2+2x+(x22x)t2)(1+t2)dt=4x0+(x1)t2+x+1(x+2+(x2)t2)(1+t2)dt.becontinued.
Answered by sma3l2996 last updated on 25/Mar/18
let z=e^(it) ⇒dt=(dz/(iz))  ∫_0 ^(2π) (dt/(x−e^(it) ))=(1/i)∫_(∣z∣≤1) (dz/(z(x−z)))  if  x>1:  ∫_0 ^(2π) (dt/(x−e^(it) ))=2πRes(f;0)=((2π)/x)  if  x≤1:  ∫_0 ^(2π) (dt/(x−e^(it) ))=2π(Res(f;0)+Res(f;x))=2π((1/x)−(1/x))=0
letz=eitdt=dziz02πdtxeit=1iz∣⩽1dzz(xz)ifx>1:02πdtxeit=2πRes(f;0)=2πxifx1:02πdtxeit=2π(Res(f;0)+Res(f;x))=2π(1x1x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *