calculate-0-2pi-dt-x-e-it- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 32343 by abdo imad last updated on 23/Mar/18 calculate∫02πdtx−eit. Commented by abdo imad last updated on 28/Mar/18 letputI(x)=∫02πdtx−eitletsupposex≠0I(x)=1x∫02πdt1−x−1eitcase1∣x−1eit∣<1⇔∣x∣>1⇒xI(x)=∫02π(∑n=0∞x−neint)dt=∑n=0∞x−n∫02πeintdt=2π+∑n=1∞x−n[1ineint]02π=2π+0=2π⇒I(x)=2πx.case2∣x−1eit∣>1⇔∣x∣<1thech.x=1α⇒∣α∣>1I(x)=I(1α)=∫02πdt1α−eit=α∫02πdt1−αeitI(x)=∫02πdtx−cost−isintdt=∫02πx−cost+isint(x−cost)2+sin2tdt=∫02πx−cost(x−cost)2+sin2tdt+i∫02πsint(x−cost)2+sin2tdt=t=π+u∫−ππx+cosu(x+cosu)2+sin2udu−i∫−ππsinu(x+cosu)2+sin2udu=2∫0πx+cosux2+2xcosu+1du+0.chtan(u2)=tgiveI(x)=2∫0+∞x+1−t21+t2x2+2x1−t21+t22dt1+t2=4∫0+∞x(1+t2)+1−t2x2(1+t2)+2x(1−t2)dt=4∫0+∞x+1+(x−1)t2(x2+2x+(x2−2x)t2)(1+t2)dt=4x∫0+∞(x−1)t2+x+1(x+2+(x−2)t2)(1+t2)dt….becontinued…. Answered by sma3l2996 last updated on 25/Mar/18 letz=eit⇒dt=dziz∫02πdtx−eit=1i∫∣z∣⩽1dzz(x−z)ifx>1:∫02πdtx−eit=2πRes(f;0)=2πxifx⩽1:∫02πdtx−eit=2π(Res(f;0)+Res(f;x))=2π(1x−1x)=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-give-from-R-and-2-1-and-I-n-0-pi-cos-nt-1-2-cost-2-dt-calculate-I-n-Next Next post: Question-163413 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.