Menu Close

calculate-0-2pi-dt-x-e-it-




Question Number 36931 by maxmathsup by imad last updated on 07/Jun/18
calculate  ∫_0 ^(2π)    (dt/(x −e^(it) ))
calculate02πdtxeit
Commented by math khazana by abdo last updated on 09/Jun/18
let f(x) = ∫_0 ^(2π)    (dt/(x −e^(it) ))  f(x)= ∫_0 ^(2π)    (dt/(x−cost −isint))  =∫_0 ^(2π)   ((x−cost +i sint)/((x−cost)^2  +sin^2 t))dt  =∫_0 ^(2π)   ((x−cost)/((x−cost)^2  +sin^2 t))dt +i ∫_0 ^(2π)  ((sint)/((x−cost)^2  +sin^2 t))dt  =I +iJ  I = ∫_0 ^π    ((x−cost)/(x^2  −2x cost  +1))dt +∫_π ^(2π)    ((x−cost)/(x^2  −2xcost +1))  chang.tan((t/2)) =u give  ∫_0 ^π    ((x−cost)/(x^2 −2x cost +1))dt = ∫_0 ^∞    ((x −((1−u^2 )/(1+u^2 )))/(x^2  −2x ((1−u^2 )/(1+u^2 )) +1)) ((2du)/(1+u^2 ))  = ∫_0 ^∞     ((x(1+u^2 ) −1+u^2 )/((1+u^2 )^2  (((x^2 (1+u^2 )−2x+2xu^2 )/(1+u^2 )))))du  =∫_0 ^∞      ((x +xu^2  −1+u^2 )/((1+u^2 ){x^2  +x^2 u^2  −2x +2xu^2 )))du  =∫_0 ^∞   (((x+1)u^2  +x−1)/((1+u^2 ){ (x^2  +2x)u^2  +x^2  −2x}))du  =(1/x)∫_0 ^∞     (((x+1)u^2  +x−1)/((1+u^2 )( (x+2)u^2  +x−2))) du  = (1/(x(x+2)))∫_0 ^∞    (((x+1)u^2  +x−1)/((1+u^2 )(u^2  +((x−2)/(x+2)))))du  case1 ((x−2)/(x+2))>0 andx(x+2)≠0 let  ϕ(z)= (((x+1)z^2  +x−1)/((1+z^2 )(z^(2 )  +((x−2)/(x+2))))) the poles of ϕ are  i ,−i, i(√((x−2)/(x+2))),−i(√((x−2)/(x+2)))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ { Res(ϕ,i)+Res(ϕ,i(√((x−2)/(x+2))))}  Res(ϕ,i) = (((x+1)(−1) +x−1)/(2i(−1 +((x−2)/(x+2))))) =((−2)/(2i((−4)/(x+2))))  =((−2(x+2))/(−8i)) = ((x+2)/(4i))  Res(ϕ,i(√((x−2)/(x+2)))) = ((−(x+1)((x−2)/(x+2)) +x−1)/(2i(√((x−2)/(x+2)))(1−((x−2)/(x+2)))))  = (((x−1)(x+2)−(x+1)(x−2))/(2i(x+2)(√((x−2)/(x+2)))(x+2 −x+2)))  = ((x^2  +x −2 −(x^2  −x−2))/(8i(x+2)(√((x−2)/(x+2)))))  = ((2x)/(8i(√(x^2  −4)))) = (x/(4i(√(x^2  −4))))  ∫_(−∞) ^+  ϕ(z)dz =2iπ{ ((x+2)/(4i)) + (x/(4i(√(x^2 −4))))}  =(π/2)(x+2) +((πx)/(2(√(x^2  −4)))) ⇒  ∫_0 ^π    ((x−cost)/(x^2  −2x cost +1)) dt =(1/(x(x+2))){(π/4)(x+2) +((πx)/(4(√(x^2  −4)))) .}  = (π/(4x)) +(π/(4(x+2)(√(x^2  −4)))) .  case 2  ((x−2)/(x+2))<0 ⇒  ϕ(z) = (((x+1)z^2  +x−1)/((1+z^2 )(z^2  − ((2−x)/(2+x))))) and the roots of ϕ are  i,−i,(√((2−x)/(2+x)))  ,−(√( ((2−x)/(2+x))))  and we follow the same  method...
letf(x)=02πdtxeitf(x)=02πdtxcostisint=02πxcost+isint(xcost)2+sin2tdt=02πxcost(xcost)2+sin2tdt+i02πsint(xcost)2+sin2tdt=I+iJI=0πxcostx22xcost+1dt+π2πxcostx22xcost+1chang.tan(t2)=ugive0πxcostx22xcost+1dt=0x1u21+u2x22x1u21+u2+12du1+u2=0x(1+u2)1+u2(1+u2)2(x2(1+u2)2x+2xu21+u2)du=0x+xu21+u2(1+u2){x2+x2u22x+2xu2)du=0(x+1)u2+x1(1+u2){(x2+2x)u2+x22x}du=1x0(x+1)u2+x1(1+u2)((x+2)u2+x2)du=1x(x+2)0(x+1)u2+x1(1+u2)(u2+x2x+2)ducase1x2x+2>0andx(x+2)0letφ(z)=(x+1)z2+x1(1+z2)(z2+x2x+2)thepolesofφarei,i,ix2x+2,ix2x+2+φ(z)dz=2iπ{Res(φ,i)+Res(φ,ix2x+2)}Res(φ,i)=(x+1)(1)+x12i(1+x2x+2)=22i4x+2=2(x+2)8i=x+24iRes(φ,ix2x+2)=(x+1)x2x+2+x12ix2x+2(1x2x+2)=(x1)(x+2)(x+1)(x2)2i(x+2)x2x+2(x+2x+2)=x2+x2(x2x2)8i(x+2)x2x+2=2x8ix24=x4ix24+φ(z)dz=2iπ{x+24i+x4ix24}=π2(x+2)+πx2x240πxcostx22xcost+1dt=1x(x+2){π4(x+2)+πx4x24.}=π4x+π4(x+2)x24.case2x2x+2<0φ(z)=(x+1)z2+x1(1+z2)(z22x2+x)andtherootsofφarei,i,2x2+x,2x2+xandwefollowthesamemethod
Commented by math khazana by abdo last updated on 09/Jun/18
∫_π ^(2π)    ((x−cost)/(x^2  −2xcost +1))dt =_(t=π+u)  ∫_0 ^π   ((x+cosu)/(x^2  +2x cosu +1))du  ...
π2πxcostx22xcost+1dt=t=π+u0πx+cosux2+2xcosu+1du

Leave a Reply

Your email address will not be published. Required fields are marked *