calculate-0-2pi-dt-x-e-it- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36931 by maxmathsup by imad last updated on 07/Jun/18 calculate∫02πdtx−eit Commented by math khazana by abdo last updated on 09/Jun/18 letf(x)=∫02πdtx−eitf(x)=∫02πdtx−cost−isint=∫02πx−cost+isint(x−cost)2+sin2tdt=∫02πx−cost(x−cost)2+sin2tdt+i∫02πsint(x−cost)2+sin2tdt=I+iJI=∫0πx−costx2−2xcost+1dt+∫π2πx−costx2−2xcost+1chang.tan(t2)=ugive∫0πx−costx2−2xcost+1dt=∫0∞x−1−u21+u2x2−2x1−u21+u2+12du1+u2=∫0∞x(1+u2)−1+u2(1+u2)2(x2(1+u2)−2x+2xu21+u2)du=∫0∞x+xu2−1+u2(1+u2){x2+x2u2−2x+2xu2)du=∫0∞(x+1)u2+x−1(1+u2){(x2+2x)u2+x2−2x}du=1x∫0∞(x+1)u2+x−1(1+u2)((x+2)u2+x−2)du=1x(x+2)∫0∞(x+1)u2+x−1(1+u2)(u2+x−2x+2)ducase1x−2x+2>0andx(x+2)≠0letφ(z)=(x+1)z2+x−1(1+z2)(z2+x−2x+2)thepolesofφarei,−i,ix−2x+2,−ix−2x+2∫−∞+∞φ(z)dz=2iπ{Res(φ,i)+Res(φ,ix−2x+2)}Res(φ,i)=(x+1)(−1)+x−12i(−1+x−2x+2)=−22i−4x+2=−2(x+2)−8i=x+24iRes(φ,ix−2x+2)=−(x+1)x−2x+2+x−12ix−2x+2(1−x−2x+2)=(x−1)(x+2)−(x+1)(x−2)2i(x+2)x−2x+2(x+2−x+2)=x2+x−2−(x2−x−2)8i(x+2)x−2x+2=2x8ix2−4=x4ix2−4∫−∞+φ(z)dz=2iπ{x+24i+x4ix2−4}=π2(x+2)+πx2x2−4⇒∫0πx−costx2−2xcost+1dt=1x(x+2){π4(x+2)+πx4x2−4.}=π4x+π4(x+2)x2−4.case2x−2x+2<0⇒φ(z)=(x+1)z2+x−1(1+z2)(z2−2−x2+x)andtherootsofφarei,−i,2−x2+x,−2−x2+xandwefollowthesamemethod… Commented by math khazana by abdo last updated on 09/Jun/18 ∫π2πx−costx2−2xcost+1dt=t=π+u∫0πx+cosux2+2xcosu+1du… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-u-n-1-2n-1-1-2n-3-1-4n-1-calculate-lim-n-u-n-Next Next post: let-f-C-0-0-pi-R-prove-that-lim-n-0-pi-f-x-sin-nx-dx-2-pi-0-pi-f-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.