calculate-0-2pi-dx-1-2cosx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 32483 by prof Abdo imad last updated on 25/Mar/18 calculate∫02πdx1+2cosx. Commented by prof Abdo imad last updated on 26/Mar/18 letputI=∫02πdx1+2cosxthech.x=π+tgiveI=∫−ππdt1−2cost=2∫0πdt1−2costandthech.tan(t2)=uhiveI=2∫0+∞11−21−u21+u22du1+u2=4∫0∞du1+u2−2+2u2=4∫0∞du3u2−1=4∫0∞du(3u+1)(3−1)=2∫0∞(13t−1−13t+1)du=23[ln∣3t−13t+1∣]0+∞=0I=0 Commented by prof Abdo imad last updated on 26/Mar/18 methodofresidusch.eix=zgiveI=∫∣z∣=111+2z+z−12dziz=∫∣z∣=1dziz(1+z+z−1)=∫∣z∣=1−idzz+z2+1=∫∣z∣=1−idzz2+z+1letimtroducethecomplexfunctionφ(z)=−idzz2+z+1.polesofφ?z2+z+1=0⇒Δ=1−4=−3=(i3)2z1=−1+i32=jandz2=−1−i32=j−∣z1∣=1and∣z2∣=1so∫∣z∣=1φ(z)dz=2iπ(Res(φ,z1)+Res(φ,z2))butwehaveφ(z)=−i(z−z1)(z−z2)Res(φ,z1)=−iz1−z2=−ii3=−13Res(φ,z2)=−iz2−z1=−i−i3=13∫∣z∣=1φ(z)dz=2iπ(−13+13)=0⇒I=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-1-ln-2-x-x-2-1-dx-Next Next post: the-vector-equations-of-two-lines-l-1-and-l-2-are-given-by-l-1-r-5i-j-k-3i-2j-l-2-r-2i-3j-2k-2j-k-find-thd-position-vdctor-of-intersection-of-thf-linds-l-1-and-l-2-thd-cartesian-equatkon Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.