Menu Close

calculate-0-2pi-dx-1-2cosx-




Question Number 32483 by prof Abdo imad last updated on 25/Mar/18
calculate ∫_0 ^(2π)     (dx/(1+2cosx)) .
calculate02πdx1+2cosx.
Commented by prof Abdo imad last updated on 26/Mar/18
let put  I = ∫_0 ^(2π)   (dx/(1+2cosx)) the ch. x=π +t  give  I  = ∫_(−π) ^π       (dt/(1−2cost))  = 2 ∫_0 ^π     (dt/(1−2cost))  and the  ch. tan((t/2))=u hive  I  = 2 ∫_0 ^(+∞)     (1/(1−2((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  = 4 ∫_0 ^∞      (du/(1+u^2  −2 +2u^2 )) = 4∫_0 ^∞    (du/(3u^2  −1))  = 4 ∫_0 ^∞    (du/(((√3) u +1)((√3) −1)))  =2 ∫_0 ^∞   ( (1/( (√3) t −1)) −(1/( (√3) t+1)))du  =(2/( (√3)))[ ln∣(((√3)t−1)/( (√3)t +1))∣]_0 ^(+∞)  =0  I =0
letputI=02πdx1+2cosxthech.x=π+tgiveI=ππdt12cost=20πdt12costandthech.tan(t2)=uhiveI=20+1121u21+u22du1+u2=40du1+u22+2u2=40du3u21=40du(3u+1)(31)=20(13t113t+1)du=23[ln3t13t+1]0+=0I=0
Commented by prof Abdo imad last updated on 26/Mar/18
method of residus ch. e^(ix) =z give  I =∫_(∣z∣=1)   (1/(1+2 ((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)     (dz/(iz(1+z+z^(−1) ))) =∫_(∣z∣=1)    ((−idz)/(z +z^2  +1))  = ∫_(∣z∣=1)   ((−idz)/(z^2  +z +1)) let imtroduce the complex  function ϕ(z)=   ((−idz)/(z^2  +z +1)) .poles of ϕ?  z^2  +z +1=0 ⇒ Δ=1−4=−3=(i(√3))^2   z_1 =((−1 +i(√3))/2) =j and z_2 =((−1−i(√3))/2) =j^−   ∣z_1 ∣=1 and ∣z_2 ∣=1 so  ∫_(∣z∣=1)   ϕ(z)dz =2iπ( Res(ϕ,z_1 ) +Res(ϕ,z_2 ))  but we have ϕ(z) = ((−i)/((z−z_1 )(z−z_2 )))  Res(ϕ,z_1 ) = ((−i)/(z_1  −z_2 )) = ((−i)/(i(√3))) = ((−1)/( (√3)))  Res(ϕ,z_2 ) = ((−i)/(z_2  −z_1 )) = ((−i)/(−i(√3))) = (1/( (√3)))  ∫_(∣z∣=1)  ϕ(z)dz = 2iπ( ((−1)/( (√3))) +(1/( (√3))))=0  ⇒ I =0
methodofresidusch.eix=zgiveI=z∣=111+2z+z12dziz=z∣=1dziz(1+z+z1)=z∣=1idzz+z2+1=z∣=1idzz2+z+1letimtroducethecomplexfunctionφ(z)=idzz2+z+1.polesofφ?z2+z+1=0Δ=14=3=(i3)2z1=1+i32=jandz2=1i32=jz1∣=1andz2∣=1soz∣=1φ(z)dz=2iπ(Res(φ,z1)+Res(φ,z2))butwehaveφ(z)=i(zz1)(zz2)Res(φ,z1)=iz1z2=ii3=13Res(φ,z2)=iz2z1=ii3=13z∣=1φ(z)dz=2iπ(13+13)=0I=0

Leave a Reply

Your email address will not be published. Required fields are marked *