Menu Close

calculate-0-2pi-dx-2cos-2-x-3-sin-2-x-




Question Number 37587 by prof Abdo imad last updated on 15/Jun/18
calculate  ∫_0 ^(2π)      (dx/(2cos^2 x +(√3) sin^2 x))
calculate02πdx2cos2x+3sin2x
Commented by math khazana by abdo last updated on 16/Jun/18
I = ∫_0 ^(2π)     (dx/(2 ((1+cos(2x))/2)+(√3)((1−cos(2x))/2)))  = ∫_0 ^(2π)     (dx/(1+cos(2x)+((√3)/2)(1−cos(2x))))  = ∫_0 ^(2π)       ((2dx)/(2 +2cos(2x) +(√3) −(√3)cos(2x)))  = ∫_0 ^(2π)      ((2dx)/(2+(√3)  +(2−(√3))cos(2x)))  =_(2x=t)     ∫_0 ^(4π)       ((2dx)/(2+(√3) +(2−(√3))cost)) (dt/2)  = ∫_0 ^(4π)     (dt/(2 +(√3) +(2−(√3))cost))  = ∫_0 ^(2π)     (dt/(2+(√3) +(2−(√3))cost)) +∫_(2π) ^(4π)     (dt/(2+(√3)  +(2−(√3))cost))  =K +H  chang. e^(it)  =z give  K = ∫_(∣z∣ =1)     (1/(2+(√3) +(2−(√3))((z+z^(−1) )/2))) (dz/(iz))  =  ∫_(∣z∣=1)        ((2dz)/(iz(4+2(√3)  +(2−(√3))(z+z^(−1) )))  = ∫_(∣z∣=1)   ((−2idz)/((2−(√3))z^2  +(4+2(√3))z +2−(√3)))  let ϕ(z)=  ((−2i)/((2−(√3))z^2  +(4+2(√3))z +2−(√3)))  poles of ϕ?  Δ^′  = (2+(√3))^2  −(2−(√3))^2 =4 +4(√3) +3−4 +4(√3) −3  =8(√3)  z_1 = ((−2−(√3)   +2(√2)(√(√3)))/(2−(√3)))  z_2 = ((−2−(√3) −2(√2) (√(√3)))/(2−(√3)))  ∣z_1 ∣ −1 =((∣ 2+(√3) −2(√2)(√(√3))∣)/(2−(√3)))  (2+(√3))^2  −8(√3) = 7 −4(√3) −8(√3)=7−12(√3)<0  ⇒∣z_1 ∣<1 and we verify that  ∣z_2 ∣>1  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_1 )  Res(ϕ,z_1 ) =  ((−2i)/((2−(√3))(z_1  −z_2 )))  =  ((−2i)/((2−(√3))((4(√(2(√3))))/(2−(√3))))) =  ((−i)/(2(√(2(√3))))) .⇒  ∫_(∣z∣=1)  ϕ(z)dz = 2iπ ((−i)/(2(√(2(√3))))) = (π/( (√(2(√3)))))  =K .
I=02πdx21+cos(2x)2+31cos(2x)2=02πdx1+cos(2x)+32(1cos(2x))=02π2dx2+2cos(2x)+33cos(2x)=02π2dx2+3+(23)cos(2x)=2x=t04π2dx2+3+(23)costdt2=04πdt2+3+(23)cost=02πdt2+3+(23)cost+2π4πdt2+3+(23)cost=K+Hchang.eit=zgiveK=z=112+3+(23)z+z12dziz=z∣=12dziz(4+23+(23)(z+z1)=z∣=12idz(23)z2+(4+23)z+23letφ(z)=2i(23)z2+(4+23)z+23polesofφ?Δ=(2+3)2(23)2=4+43+34+433=83z1=23+22323z2=2322323z11=2+322323(2+3)283=74383=7123<0⇒∣z1∣<1andweverifythatz2∣>1z∣=1φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=2i(23)(z1z2)=2i(23)42323=i223.z∣=1φ(z)dz=2iπi223=π23=K.
Commented by math khazana by abdo last updated on 16/Jun/18
H =∫_(2π) ^(4π)      (dt/(2+(√3) +(2−(√3))cost))  =_(t =2π +x)       ∫_0 ^(2π)          (dx/(2+(√(3 ))+(2−(√3))cosx))   =K  =(π/( (√(2(√3))))) ⇒  I =H +K = ((2π)/( (√(2(√3))))) = ((π(√2))/( (√(√3))))    I  =((π(√2))/( (√(√3)))) .
H=2π4πdt2+3+(23)cost=t=2π+x02πdx2+3+(23)cosx=K=π23I=H+K=2π23=π23I=π23.
Answered by ajfour last updated on 15/Jun/18
∫_0 ^(  2π) ((sec^2 xdx)/(2+(√3)tan^2 x))  =(4/( (√3))) ∫_0 ^(  ∞) (dt/(t^2 +(2/( (√3)))))  = (4/( (√3)))×(3^(1/4) /( (√2)))((π/2)) =π (√(2/( (√3))))  .
02πsec2xdx2+3tan2x=430dtt2+23=43×31/42(π2)=π23.
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 16/Jun/18
in place of (Π/2)    i put (Π/4)
inplaceofΠ2iputΠ4

Leave a Reply

Your email address will not be published. Required fields are marked *