calculate-0-2pi-dx-2sinx-cosx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 63666 by mathmax by abdo last updated on 07/Jul/19 calculate∫02πdx2sinx+cosx Commented by MJS last updated on 07/Jul/19 =0becausewe′reintegratingoverafullperiod Commented by mathmax by abdo last updated on 07/Jul/19 letI=∫02πdx2sinx+cosxchangementeix=zgiveI=∫∣z∣=1dziz(2z−z−12i+z+z−12)=∫∣z∣=1dzz2−1+iz2+i2=∫∣z∣=12dz2z2−2+iz2+i=∫∣z∣=12dz(2+i)z2−2+i=22+i∫∣z∣=1dzz2−2−i2+iletW(z)=1z2−2−i2+ipolesofW?∣2−i2+i∣=55=1and2−i2+i=5eiarctan(−12)5eiarctan(12)=e−2iarctan(12)⇒2−i2+i=e−iarctan(12)⇒W(z)=1(z−e−iarctan(12))(z+e−iactan(12))residustheoremgive∫∣z∣=1W(z)dz=2iπ{Res(W,−e−iarctan(12))+Res(W,e−iarctan(12)}Res(W,−e−iarctan(12))=limz→−e−iarctan(12)(z+e−iarctan(12))W(z)=1−2e−iarctan(12)=−12eiarctan(12)=−12ei(π2−arctan(2))=−i2e−iarctan(2)⇒Res(W,e−iarctan(12))=12e−iarctan(12)=12eiarctan(12)=12ei(π2−arctan(2))=i2e−iarctan(2)⇒∫∣z∣=1W(z)dz=2iπ{−i2e−iarctan(2)+i2e−iarctan(2)}=0⇒I=0 Commented by MJS last updated on 07/Jul/19 2sinx+cosx=5sin(x+arctan12)55∫dxsin(x+arctan12)=55∫dtsint==−ln(1sint+1tant)… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-0-t-a-1-x-t-n-dt-with-0-lt-a-lt-1-and-x-gt-0-and-n-2-1-determine-a-explicit-form-of-f-x-2-calculate-g-x-0-t-a-1-x-t-n-2-dt-3-find-f-k-x-at-forNext Next post: 1-calculate-0-2pi-dt-cost-x-sint-wih-x-from-R-2-calculate-0-2pi-sint-cost-xsint-2-dt-3-find-the-value-of-0-2pi-dt-cos-2t-2sin-2t- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.