Menu Close

calculate-0-2pi-dx-2sinx-cosx-




Question Number 63666 by mathmax by abdo last updated on 07/Jul/19
calculate ∫_0 ^(2π)  (dx/(2sinx +cosx))
calculate02πdx2sinx+cosx
Commented by MJS last updated on 07/Jul/19
=0  because we′re integrating over a full period
=0becausewereintegratingoverafullperiod
Commented by mathmax by abdo last updated on 07/Jul/19
let I =∫_0 ^(2π)   (dx/(2sinx +cosx))    changement e^(ix) =z  give  I =∫_(∣z∣=1)      (dz/(iz( 2 ((z−z^(−1) )/(2i))+((z+z^(−1) )/2))))  =∫_(∣z∣=1)      (dz/(z^2 −1 +((iz^2 +i)/2))) = ∫_(∣z∣=1)      ((2dz)/(2z^2 −2 +iz^2  +i))  =∫_(∣z∣=1)      ((2dz)/((2+i)z^2  −2+i)) =(2/(2+i)) ∫_(∣z∣=1)      (dz/(z^2 −((2−i)/(2+i))))  let W(z)=(1/(z^2 −((2−i)/(2+i))))  poles of W?  ∣((2−i)/(2+i))∣=((√5)/( (√5))) =1 and    ((2−i)/(2+i)) =(((√5)e^(iarctan(−(1/2))) )/( (√5)e^(iarctan((1/2))) )) =e^(−2i arctan((1/2)))  ⇒  (√((2−i)/(2+i)))= e^(−i arctan((1/2)))  ⇒W(z) =(1/((z−e^(−iarctan((1/2))) )(z+e^(−i actan((1/2))) )))  residus theorem give  ∫_(∣z∣=1) W(z)dz =2iπ {Res(W,−e^(−iarctan((1/2))) ) +Res(W,e^(−iarctan((1/2))) }  Res(W,−e^(−iarctan((1/2))) )=lim_(z→−e^(−iarctan((1/2))) )    (z+e^(−i arctan((1/2))) )W(z)  =(1/(−2e^(−i arctan((1/2))) )) =−(1/2) e^(i arctan((1/2)))  =−(1/2) e^(i((π/2)−arctan(2)))   =−(i/2) e^(−iarctan(2))  ⇒  Res(W,e^(−iarctan((1/2))) ) =(1/(2e^(−iarctan((1/2))) )) =(1/2) e^(i arctan((1/2)))   =(1/2) e^(i((π/2)−arctan(2))) =(i/2) e^(−iarctan(2))  ⇒  ∫_(∣z∣=1)  W(z)dz =2iπ{−(i/2) e^(−iarctan(2)) +(i/2) e^(−iarctan(2)) } =0 ⇒  I =0
letI=02πdx2sinx+cosxchangementeix=zgiveI=z∣=1dziz(2zz12i+z+z12)=z∣=1dzz21+iz2+i2=z∣=12dz2z22+iz2+i=z∣=12dz(2+i)z22+i=22+iz∣=1dzz22i2+iletW(z)=1z22i2+ipolesofW?2i2+i∣=55=1and2i2+i=5eiarctan(12)5eiarctan(12)=e2iarctan(12)2i2+i=eiarctan(12)W(z)=1(zeiarctan(12))(z+eiactan(12))residustheoremgivez∣=1W(z)dz=2iπ{Res(W,eiarctan(12))+Res(W,eiarctan(12)}Res(W,eiarctan(12))=limzeiarctan(12)(z+eiarctan(12))W(z)=12eiarctan(12)=12eiarctan(12)=12ei(π2arctan(2))=i2eiarctan(2)Res(W,eiarctan(12))=12eiarctan(12)=12eiarctan(12)=12ei(π2arctan(2))=i2eiarctan(2)z∣=1W(z)dz=2iπ{i2eiarctan(2)+i2eiarctan(2)}=0I=0
Commented by MJS last updated on 07/Jul/19
2sin x +cos x =(√5)sin (x+arctan (1/2))  ((√5)/5)∫(dx/(sin (x+arctan (1/2))))=((√5)/5)∫(dt/(sin t))=  =−ln ((1/(sin t))+(1/(tan t)))  ...
2sinx+cosx=5sin(x+arctan12)55dxsin(x+arctan12)=55dtsint==ln(1sint+1tant)

Leave a Reply

Your email address will not be published. Required fields are marked *