Menu Close

calculate-0-2pi-dx-cosx-2sinx-2-




Question Number 127772 by Bird last updated on 02/Jan/21
calculate ∫_0 ^(2π)   (dx/((cosx +2sinx)^2 ))
calculate02πdx(cosx+2sinx)2
Answered by mathmax by abdo last updated on 02/Jan/21
I =∫_0 ^(2π)  (dx/((cosx +2sinx)^2 )) ⇒I =∫_0 ^(2π)  (dx/(cos^2 x+4sinx cosx +4sin^2 x))  =∫_0 ^(2π)  (dx/(1+4sinxcosx +3sin^2 x)) =∫_0 ^(2π)  (dx/(1+2sin(2x)+3((1−cos(2x))/2)))  =∫_0 ^(2π)   ((2dx)/(2+4sin(2x)+3−3cos(2x)))=∫_0 ^(2π)  ((2dx)/(5+4sin(2x)−3cos(2x)))  =_(2x=t)   ∫_0 ^(4π)  (dt/(5+4sint −3cost)) =∫_0 ^(2π)  (dt/(4sint−3cost+5)) +∫_(2π) ^(4π)  (dt/(4sint−3cost +5))(→t=2π+u)  =2∫_0 ^(2π)  (dt/(4sint−3cost +5)) =_(e^(it)  =z)   2∫_(∣z∣=1)    (dz/(iz(4((z−z^(−1) )/(2i))−3((z+z^(−1) )/2)+5)))  =2 ∫_(∣z∣=1)       (dz/(iz((2/i)(z−z^(−1) )−(3/2)(z+z^(−1) )+5)))  =−2i∫_(∣z∣=1)    (dz/((2/i)(z^2 −1)−(3/2)(z^2  +1)+5z))  =2∫_(∣z∣=1)   (dz/(2(z^2 −1)−(3/2)i(z^2  +1)+5iz)) =4∫_(∣z∣=1)     (dz/(4(z^2 −1)−3iz^2 −3i+10iz))  =4 ∫_(∣z∣=1)        (dz/(4z^2 −4−3iz^2 −3i+10iz))  =4∫_(∣z∣=1)     (dz/((4−3i)z^2 +10iz−4−3i))  poles of w(z)=(1/((4−3i)z^2  +10iz −4−3i))  Δ^′  =(5i)^2 +(4−3i)(4+3i) =−25+16+9=0 →one root  z_0 =−(b^′ /a) =−((5i)/(4−3i)) =−((5i(4+3i))/(25)) =−((4i−15)/5) ⇒  w(z) =(1/((4−3i)(z−z_0 )^2 )) ⇒∫_(∣z∣=1)  w(z)dz =2iπ Res(w,z_0 )     ∣z_0 ∣=(1/5)(√(4^2  +15^2 ))>1 ⇒Res(w,z_0 )=0 ⇒ I =0
I=02πdx(cosx+2sinx)2I=02πdxcos2x+4sinxcosx+4sin2x=02πdx1+4sinxcosx+3sin2x=02πdx1+2sin(2x)+31cos(2x)2=02π2dx2+4sin(2x)+33cos(2x)=02π2dx5+4sin(2x)3cos(2x)=2x=t04πdt5+4sint3cost=02πdt4sint3cost+5+2π4πdt4sint3cost+5(t=2π+u)=202πdt4sint3cost+5=eit=z2z∣=1dziz(4zz12i3z+z12+5)=2z∣=1dziz(2i(zz1)32(z+z1)+5)=2iz∣=1dz2i(z21)32(z2+1)+5z=2z∣=1dz2(z21)32i(z2+1)+5iz=4z∣=1dz4(z21)3iz23i+10iz=4z∣=1dz4z243iz23i+10iz=4z∣=1dz(43i)z2+10iz43ipolesofw(z)=1(43i)z2+10iz43iΔ=(5i)2+(43i)(4+3i)=25+16+9=0onerootz0=ba=5i43i=5i(4+3i)25=4i155w(z)=1(43i)(zz0)2z∣=1w(z)dz=2iπRes(w,z0)z0∣=1542+152>1Res(w,z0)=0I=0

Leave a Reply

Your email address will not be published. Required fields are marked *