calculate-0-2pi-dx-cosx-2sinx-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 127772 by Bird last updated on 02/Jan/21 calculate∫02πdx(cosx+2sinx)2 Answered by mathmax by abdo last updated on 02/Jan/21 I=∫02πdx(cosx+2sinx)2⇒I=∫02πdxcos2x+4sinxcosx+4sin2x=∫02πdx1+4sinxcosx+3sin2x=∫02πdx1+2sin(2x)+31−cos(2x)2=∫02π2dx2+4sin(2x)+3−3cos(2x)=∫02π2dx5+4sin(2x)−3cos(2x)=2x=t∫04πdt5+4sint−3cost=∫02πdt4sint−3cost+5+∫2π4πdt4sint−3cost+5(→t=2π+u)=2∫02πdt4sint−3cost+5=eit=z2∫∣z∣=1dziz(4z−z−12i−3z+z−12+5)=2∫∣z∣=1dziz(2i(z−z−1)−32(z+z−1)+5)=−2i∫∣z∣=1dz2i(z2−1)−32(z2+1)+5z=2∫∣z∣=1dz2(z2−1)−32i(z2+1)+5iz=4∫∣z∣=1dz4(z2−1)−3iz2−3i+10iz=4∫∣z∣=1dz4z2−4−3iz2−3i+10iz=4∫∣z∣=1dz(4−3i)z2+10iz−4−3ipolesofw(z)=1(4−3i)z2+10iz−4−3iΔ′=(5i)2+(4−3i)(4+3i)=−25+16+9=0→onerootz0=−b′a=−5i4−3i=−5i(4+3i)25=−4i−155⇒w(z)=1(4−3i)(z−z0)2⇒∫∣z∣=1w(z)dz=2iπRes(w,z0)∣z0∣=1542+152>1⇒Res(w,z0)=0⇒I=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-lim-x-1-x-x-2-sh-xt-t-x-dt-Next Next post: calculate-u-n-0-1-x-n-1-x-4-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.