calculate-0-2pi-ln-x-2-2xcos-1-d- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 130536 by mathmax by abdo last updated on 26/Jan/21 calculate∫02πln(x2−2xcosθ+1)dθ Answered by Ar Brandon last updated on 26/Jan/21 1.1−2acos(x)+a2=cos2−2acos(x)+a2+sin2(x)=(cos(x)−a)2+sin2(x)>02.1−2acos2kπn+a2=(cos2kπn−a)2+sin22kπn=(cos2kπn−a)2−(isin2kπn)2=(cos2kπn−isin2kπn−a)(cos2kπn+isin2kπn−a)=(a−e2ikπ/n)(a−e−2ikπ/n)3.SeeMr1549442205PVT′sexplanationonQ1074984.I=∫02πln(1−2acos(x)+a2)dx=limn→∞2πn∑nk=1ln(1−2acos(2πkn)+a2)=limn→∞2πnln∏nk=1(1−2acos(2πkn)+a2)=limn→∞2πnln(an−1)2=limn→∞4πnln(an−1)=4πlimn→∞[ln(an−1)n]=4πlimn→∞[anlnaan−1]=4πln(a) Answered by mathmax by abdo last updated on 26/Jan/21 letf(x)=∫02πln(x2−2xcosθ+1)dθ⇒f′(x)=∫02π2x−2cosθx2−2xcosθ+1dθ=eiθ=z∫∣z∣=12x−2z+z−12x2−2xz+z−12+1dziz=∫∣z∣=12x−z−z−1x2+1−xz−xz−1)izdz=1i∫∣z∣=12x−z−z−1(x2+1)z−xz2−xdz=1i∫∣z∣=12xz−z2−1−xz2+(x2+1)z−xdz=−i∫∣z∣=1z2−2xz+1z(xz2−(x2+1)z+x)dzφ(z)=z2−2xz+1z(xz2−(x2+1)z+x)polesofφ!Δ=(x2+1)2−4x2=x4+2x2+1−4x2=(x2−1)2⇒z1=x2+1+∣x2−1∣2xandz2=x2+1−∣x2−1∣2xcase1∣x∣>1⇒z1=2x22x=xandz2=22x=1x⇒∣z2∣=1∣x∣<1⇒∫Rφ(z)dz=2iπ{Res(φ,z2)}φ(z)=z2−2xz+1zx(z−z1)(z−z2)⇒Res(φ,o)=1z1z2=1Res(φ,z2)=z22−2xz2+1z2x(1x−x)=1x2−2+11−x2×x=1−x2x2(1−x2).x=1x∫Rφ(z)dz=2iπ{1x}=2iπx⇒f′(x)=−i(2iπx)=2πx⇒f(x)=2πln∣x∣+c0c0=f(1)=∫02πln(2−2cosθ)dθ=2πln(2)+∫02πln(2sin2(θ2))dθ=4πln(2)+2∫02πln(sin(θ2))dθ(θ2=t)=4πln(2)+4∫0πln(sin(t))dtbut∫0πln(sint)dt=∫0π2ln(sint)dt+∫π2πln(sint)dt==−π2ln2−π2ln2=−πln2⇒c0=4πln2−4πln2=0⇒f(x)=2πln∣x∣case2∣x∣<1wegetz1=1xandz2=xduetosymetriewegetthesamevalue⇒f(x)=2πln∣x∣ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-130537Next Next post: find-0-dx-x-with-x-0-t-x-1-e-t-dt-x-gt-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.