Menu Close

calculate-0-2pi-ln-x-2-2xcos-1-d-




Question Number 130536 by mathmax by abdo last updated on 26/Jan/21
calculate ∫_0 ^(2π) ln(x^2 −2xcosθ +1)dθ
calculate02πln(x22xcosθ+1)dθ
Answered by Ar Brandon last updated on 26/Jan/21
1.  1−2acos(x)+a^2                   =cos^2 −2acos(x)+a^2 +sin^2 (x)                  =(cos(x)−a)^2 +sin^2 (x)>0  2.  1−2a cos((2kπ)/n)+a^2                   =(cos((2kπ)/n)−a)^2 +sin^2 ((2kπ)/n)                  =(cos((2kπ)/n)−a)^2 −(isin((2kπ)/n))^2                   =(cos((2kπ)/n)−isin((2kπ)/n)−a)(cos((2kπ)/n)+isin((2kπ)/n)−a)                  =(a−e^(2ikπ/n) )(a−e^(−2ikπ/n) )  3. See Mr 1549442205PVT ′s explanation on Q107498  4.  I=∫_0 ^(2π) ln(1−2a cos(x)+a^2 )dx          =lim_(n→∞) ((2π)/n)Σ_(k=1) ^n ln(1−2a cos(((2πk)/n))+a^2 )          =lim_(n→∞) ((2π)/n)lnΠ_(k=1) ^n (1−2a cos(((2πk)/n))+a^2 )          =lim_(n→∞) ((2π)/n)ln(a^n −1)^2 =lim_(n→∞) ((4π)/n)ln(a^n −1)          =4πlim_(n→∞) [((ln(a^n −1))/n)]=4πlim_(n→∞) [((a^n lna)/(a^n −1))]          =4πln(a)
1.12acos(x)+a2=cos22acos(x)+a2+sin2(x)=(cos(x)a)2+sin2(x)>02.12acos2kπn+a2=(cos2kπna)2+sin22kπn=(cos2kπna)2(isin2kπn)2=(cos2kπnisin2kπna)(cos2kπn+isin2kπna)=(ae2ikπ/n)(ae2ikπ/n)3.SeeMr1549442205PVTsexplanationonQ1074984.I=02πln(12acos(x)+a2)dx=limn2πnnk=1ln(12acos(2πkn)+a2)=limn2πnlnnk=1(12acos(2πkn)+a2)=limn2πnln(an1)2=limn4πnln(an1)=4πlimn[ln(an1)n]=4πlimn[anlnaan1]=4πln(a)
Answered by mathmax by abdo last updated on 26/Jan/21
let f(x)=∫_0 ^(2π) ln(x^2 −2xcosθ+1)dθ ⇒f^′ (x)=∫_0 ^(2π)  ((2x−2cosθ)/(x^2 −2xcosθ +1))dθ  =_(e^(iθ)  =z)    ∫_(∣z∣=1)    ((2x−2((z+z^(−1) )/2))/(x^2 −2x((z+z^(−1) )/2)+1))(dz/(iz))  =∫_(∣z∣=1)    ((2x−z−z^(−1) )/(x^2  +1−xz−xz^(−1) )iz))dz =(1/i)∫_(∣z∣=1)   ((2x−z−z^(−1) )/((x^2 +1)z−xz^2 −x))dz  =(1/i)∫_(∣z∣=1)    ((2xz−z^2 −1)/(−xz^2 +(x^2  +1)z−x))dz =−i∫_(∣z∣=1)   ((z^2 −2xz+1)/(z(xz^2 −(x^2  +1)z+x)))dz  ϕ(z)=((z^2 −2xz+1)/(z(xz^2 −(x^2 +1)z+x))) poles of ϕ!  Δ=(x^2  +1)^2 −4x^2  =x^4 +2x^2 +1−4x^2  =(x^2 −1)^2   ⇒z_1 =((x^2  +1+∣x^2 −1∣)/(2x)) and z_2 =((x^2  +1−∣x^2 −1∣)/(2x))  case1   ∣x∣>1 ⇒z_1 =((2x^2 )/(2x))=x and z_2 =(2/(2x))=(1/x) ⇒∣z_2 ∣=(1/(∣x∣))<1 ⇒  ∫_R ϕ(z)dz =2iπ{Res(ϕ,z_2 )}  ϕ(z)=((z^2 −2xz+1)/(zx(z−z_1 )(z−z_2 ))) ⇒Res(ϕ,o) =(1/(z_1 z_2 ))=1  Res(ϕ,z_2 )=((z_2 ^2 −2xz_2 +1)/(z_2 x((1/x)−x)))=(((1/x^2 )−2+1)/(1−x^2 ))×x=((1−x^2 )/(x^2 (1−x^2 ))).x=(1/x)  ∫_R ϕ(z)dz =2iπ{(1/x)} =((2iπ)/x) ⇒f^′ (x)=−i(((2iπ)/x))=((2π)/x) ⇒  f(x)=2πln∣x∣ +c_0    c_0 =f(1) =∫_0 ^(2π) ln(2−2cosθ)dθ  =2πln(2)+∫_0 ^(2π) ln(2sin^2 ((θ/2)))dθ =4πln(2)+2∫_0 ^(2π) ln(sin((θ/2)))dθ((θ/2)=t)  =4πln(2)+4∫_0 ^π ln(sin(t))dt but  ∫_0 ^π ln(sint)dt =∫_0 ^(π/2) ln(sint)dt +∫_(π/2) ^π ln(sint)dt =  =−(π/2)ln2−(π/2)ln2 =−πln2 ⇒c_0 =4πln2−4πln2 =0 ⇒  f(x)=2πln∣x∣  case 2 ∣x∣<1 we get z_1 =(1/x) and z_2 =x  due to symetrie we get the  same value ⇒f(x)=2πln∣x∣
letf(x)=02πln(x22xcosθ+1)dθf(x)=02π2x2cosθx22xcosθ+1dθ=eiθ=zz∣=12x2z+z12x22xz+z12+1dziz=z∣=12xzz1x2+1xzxz1)izdz=1iz∣=12xzz1(x2+1)zxz2xdz=1iz∣=12xzz21xz2+(x2+1)zxdz=iz∣=1z22xz+1z(xz2(x2+1)z+x)dzφ(z)=z22xz+1z(xz2(x2+1)z+x)polesofφ!Δ=(x2+1)24x2=x4+2x2+14x2=(x21)2z1=x2+1+x212xandz2=x2+1x212xcase1x∣>1z1=2x22x=xandz2=22x=1x⇒∣z2∣=1x<1Rφ(z)dz=2iπ{Res(φ,z2)}φ(z)=z22xz+1zx(zz1)(zz2)Res(φ,o)=1z1z2=1Res(φ,z2)=z222xz2+1z2x(1xx)=1x22+11x2×x=1x2x2(1x2).x=1xRφ(z)dz=2iπ{1x}=2iπxf(x)=i(2iπx)=2πxf(x)=2πlnx+c0c0=f(1)=02πln(22cosθ)dθ=2πln(2)+02πln(2sin2(θ2))dθ=4πln(2)+202πln(sin(θ2))dθ(θ2=t)=4πln(2)+40πln(sin(t))dtbut0πln(sint)dt=0π2ln(sint)dt+π2πln(sint)dt==π2ln2π2ln2=πln2c0=4πln24πln2=0f(x)=2πlnxcase2x∣<1wegetz1=1xandz2=xduetosymetriewegetthesamevaluef(x)=2πlnx

Leave a Reply

Your email address will not be published. Required fields are marked *