Menu Close

calculate-0-2x-2-1-x-2-x-1-2-x-2-x-1-2-dx-




Question Number 105231 by mathmax by abdo last updated on 27/Jul/20
calculate ∫_0 ^(+∞)  ((2x^2 −1)/((x^2 +x+1)^2 (x^2 −x+1)^2 ))dx
calculate0+2x21(x2+x+1)2(x2x+1)2dx
Answered by 1549442205PVT last updated on 27/Jul/20
  F=(1/2)∫((4x^2 )/((x^2 +x+1)^2 (x^2 −x+1)^2 ))dx−∫(dx/((x^2 +x+1)^2 (x^2 −x+1)^2 ))=∫(A)+∫(B)  we have B= (1/((x^2 +x+1)^2 (x^2 −x+1)^2 ))=[(1/2)(((x+1)/((x^2 +x+1)))−((x−1)/((x^2 −x+1))))]^2 =((x^2 +2x+1)/(4(x^2 +x+1)^2 ))+((x^2 −2x+1)/(4(x^2 −x+1)^2 ))−((2x^2 −2)/(4(x^2 +x+1)(x^2 −x+1)))  =(1/(4(x^2 +x+1)))+(x/(4(x^2 +x+1)^2 ))+(1/(4(x^2 −x+1)))+((−x)/(4(x^2 −x+1)^2 ))+((2x+1)/(4(x^2 +x+1)))−((2x−1)/(4(x^2 −x+1)))  ((2x+2)/(4(x^2 +x+1)))−((2x−2)/(4(x^2 −x+1)))+(x/(4(x^2 +x+1)^2 ))+((−x)/(4(x^2 −x+1)^2 ))(set  { ((x^2 +x+1=u)),((x^2 −x+1=v)) :} )  4B=(x/u^2 )−(x/v^2 )+((2x+2)/u)−((2x−2)/v)  A=(1/2)((1/(x^2 −x+1))−(1/(x^2 +x+1)))^2 =((1/((x^2 −x+1)^2 ))+(1/((x^2 +x+1)^2 ))−(2/((x^2 +x+1)(x^2 −x+1))))dx  2A=(1/((x^2 −x+1)^2 ))+(1/((x^2 +x+1)^2 ))+(((x−1)/(x^2 −x+1))−((x+1)/(x^2 +x+1)))  =(1/u^2 )+(1/v^2 )+((x−1)/v)−((x+1)/u)  ⇒4A=(2/u^2 )+(2/v^2 )+((2x−2)/v)−((2x+2)/u).Hence,  4F=4A−4B=−((x−2)/u^2 )+((x+2)/v^2 )−((4x+1))/u)+((4(x−1))/v)  4F=∫(−((x−2)/((x^2 +x+1)^2 ))+((x+2)/((x^2 −x+1)^2 ))−((4x+1))/(x^2 +x+1))+((4(x−1))/(x^2 −x+1)))dx  We have:∫(dx/(x^2 +x+1))=∫((d(x+(1/2)))/((x+(1/2))^2 +(((√3)/2))^2 ))=(2/( (√3)))tan^(−1) (((x+(1/2))/((√3)/2)))  =(2/( (√3)))tan^(−1) (((2x+1)/( (√3))))(as ∫(dx/((x^2 +a^2 )))=(1/a)tan^(−1) ((x/a)))  Consequently,  M=∫((x−2)/((x^2 +x+1)^2 ))dx=(1/2)∫((2x+1)/((x^2 +x+1)^2 ))−(5/2)∫(dx/((x^2 +x+1)^2 ))  =(1/2)∫((d(x^2 +x+1))/((x^2 +x+1)^2 ))−(3/2)I_2 =−(1/(2(x^2 +x+1)^2 ))+(1/2)I_2   N=∫((x+2)/((x^2 −x+1)^2 ))dx=(1/2)∫((2x−1)/((x^2 −x+1)^2 ))dx  +(5/2)∫(dx/((x^2 −x+1)^2 ))=−(1/(2(x^2 −x+1)^2 ))+(5/2).J_2   P=∫((x+1)/(x^2 +x+1))dx=(1/2)∫((2x+1)/(x^2 +x+1))dx+(1/2)∫(dx/(x^2 +x+1))  =(1/2)ln(x^2 +x+1)+(1/( (√3)))tan^(−1) (((2x+1)/( (√3))))  Q=∫((x−1)/(x^2 −x+1))dx=(1/2)ln(x^2 −x+1)−(1/( (√3)))tan^(−1) (((2x−1)/( (√3))))  We have:I_2 =∫(dt/((t^2 +a^2 )^2 ))(with t=x+(1/2)  Apply current formular :I_n =(1/(2a^2 (n−1))).(t/((t^2 +a^2 )^(n−1) ))+(1/a^2 ).((2n−3)/(2n−2)).I_(n−1) we get  I_2 =(2/3).((x+(1/2))/(x^2 +x+1))+(4/3).(1/2)∫((d(x+(1/2)))/((x+(1/2))^2 +(((√3)/2))^2 ))  =((2x+1)/(3(x^2 +x+1)))+.(4/(3(√3)))tan^(−1) (((2x+1)/( (√3)))).Similarly,  J_2 =((2x−1)/(3(x^2 −x+1)))+(4/(3(√3)))tan^(−1) (((2x−1)/( (√3))))  Finally,4F=−M+N−4P+4Q=(1/(2(x^2 +x+1)))−(1/(2(x^2 −x+1)))  +(5/2){((2x+1)/(3(x^2 +x+1)))+.(4/(3(√3)))tan^(−1) (((2x+1)/( (√3))))  +[((2x−1)/(3(x^2 −x+1)))+(4/(3(√3)))tan^(−1) (((2x−1)/( (√3))))] }  −2ln(x^2 +x+1)+2ln(x^2 −x+1)−(4/( (√3)))tan^(−1) (((2x+1)/( (√3))))−(4/( (√3)))tan^(−1) (((2x−1)/( (√3))))  =((10x^3 +2x)/((x^2 +x+1)(x^2 −x+1)))+2ln((x^2 −x+1)/(x^2 +x+1))  −(2/(3(√3)))[tan^(−1) (((2x−1)/( (√3))))+tan^(−1) (((2x+1)/( (√3))))]  It is easy to see that 4F(0)=0  4F(+∞)=−(2/(3(√3)))((π/2)+(π/2))=−((2π)/(3(√3)))  Therefore,∫_0 ^(+∞) ((2x^2 −1)/((x^2 +x+1)^2 (x^2 −x+1)^2 ))dx=((−2𝛑)/(3(√3)))
F=124x2(x2+x+1)2(x2x+1)2dxdx(x2+x+1)2(x2x+1)2=(A)+(B)wehaveB=1(x2+x+1)2(x2x+1)2=[12(x+1(x2+x+1)x1(x2x+1))]2=x2+2x+14(x2+x+1)2+x22x+14(x2x+1)22x224(x2+x+1)(x2x+1)=14(x2+x+1)+x4(x2+x+1)2+14(x2x+1)+x4(x2x+1)2+2x+14(x2+x+1)2x14(x2x+1)2x+24(x2+x+1)2x24(x2x+1)+x4(x2+x+1)2+x4(x2x+1)2(set{x2+x+1=ux2x+1=v)4B=xu2xv2+2x+2u2x2vA=12(1x2x+11x2+x+1)2=(1(x2x+1)2+1(x2+x+1)22(x2+x+1)(x2x+1))dx2A=1(x2x+1)2+1(x2+x+1)2+(x1x2x+1x+1x2+x+1)=1u2+1v2+x1vx+1u4A=2u2+2v2+2x2v2x+2u.Hence,4F=4A4B=x2u2+x+2v24x+1)u+4(x1)v4F=(x2(x2+x+1)2+x+2(x2x+1)24x+1)x2+x+1+4(x1)x2x+1)dxWehave:dxx2+x+1=d(x+12)(x+12)2+(32)2=23tan1(x+1232)=23tan1(2x+13)(asdx(x2+a2)=1atan1(xa))Consequently,M=x2(x2+x+1)2dx=122x+1(x2+x+1)252dx(x2+x+1)2=12d(x2+x+1)(x2+x+1)232I2=12(x2+x+1)2+12I2N=x+2(x2x+1)2dx=122x1(x2x+1)2dx+52dx(x2x+1)2=12(x2x+1)2+52.J2P=x+1x2+x+1dx=122x+1x2+x+1dx+12dxx2+x+1=12ln(x2+x+1)+13tan1(2x+13)Q=x1x2x+1dx=12ln(x2x+1)13tan1(2x13)Wehave:I2=dt(t2+a2)2(witht=x+12Applycurrentformular:In=12a2(n1).t(t2+a2)n1+1a2.2n32n2.In1wegetI2=23.x+12x2+x+1+43.12d(x+12)(x+12)2+(32)2=2x+13(x2+x+1)+.433tan1(2x+13).Similarly,J2=2x13(x2x+1)+433tan1(2x13)Finally,4F=M+N4P+4Q=12(x2+x+1)12(x2x+1)+52{2x+13(x2+x+1)+.433tan1(2x+13)+[2x13(x2x+1)+433tan1(2x13)]}2ln(x2+x+1)+2ln(x2x+1)43tan1(2x+13)43tan1(2x13)=10x3+2x(x2+x+1)(x2x+1)+2lnx2x+1x2+x+1233[tan1(2x13)+tan1(2x+13)]Itiseasytoseethat4F(0)=04F(+)=233(π2+π2)=2π33Therefore,0+2x21(x2+x+1)2(x2x+1)2dx=2π33
Commented by abdomathmax last updated on 27/Jul/20
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *