calculate-0-2x-2-1-x-2-x-1-2-x-2-x-1-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 105231 by mathmax by abdo last updated on 27/Jul/20 calculate∫0+∞2x2−1(x2+x+1)2(x2−x+1)2dx Answered by 1549442205PVT last updated on 27/Jul/20 F=12∫4x2(x2+x+1)2(x2−x+1)2dx−∫dx(x2+x+1)2(x2−x+1)2=∫(A)+∫(B)wehaveB=1(x2+x+1)2(x2−x+1)2=[12(x+1(x2+x+1)−x−1(x2−x+1))]2=x2+2x+14(x2+x+1)2+x2−2x+14(x2−x+1)2−2x2−24(x2+x+1)(x2−x+1)=14(x2+x+1)+x4(x2+x+1)2+14(x2−x+1)+−x4(x2−x+1)2+2x+14(x2+x+1)−2x−14(x2−x+1)2x+24(x2+x+1)−2x−24(x2−x+1)+x4(x2+x+1)2+−x4(x2−x+1)2(set{x2+x+1=ux2−x+1=v)4B=xu2−xv2+2x+2u−2x−2vA=12(1x2−x+1−1x2+x+1)2=(1(x2−x+1)2+1(x2+x+1)2−2(x2+x+1)(x2−x+1))dx2A=1(x2−x+1)2+1(x2+x+1)2+(x−1x2−x+1−x+1x2+x+1)=1u2+1v2+x−1v−x+1u⇒4A=2u2+2v2+2x−2v−2x+2u.Hence,4F=4A−4B=−x−2u2+x+2v2−4x+1)u+4(x−1)v4F=∫(−x−2(x2+x+1)2+x+2(x2−x+1)2−4x+1)x2+x+1+4(x−1)x2−x+1)dxWehave:∫dxx2+x+1=∫d(x+12)(x+12)2+(32)2=23tan−1(x+1232)=23tan−1(2x+13)(as∫dx(x2+a2)=1atan−1(xa))Consequently,M=∫x−2(x2+x+1)2dx=12∫2x+1(x2+x+1)2−52∫dx(x2+x+1)2=12∫d(x2+x+1)(x2+x+1)2−32I2=−12(x2+x+1)2+12I2N=∫x+2(x2−x+1)2dx=12∫2x−1(x2−x+1)2dx+52∫dx(x2−x+1)2=−12(x2−x+1)2+52.J2P=∫x+1x2+x+1dx=12∫2x+1x2+x+1dx+12∫dxx2+x+1=12ln(x2+x+1)+13tan−1(2x+13)Q=∫x−1x2−x+1dx=12ln(x2−x+1)−13tan−1(2x−13)Wehave:I2=∫dt(t2+a2)2(witht=x+12Applycurrentformular:In=12a2(n−1).t(t2+a2)n−1+1a2.2n−32n−2.In−1wegetI2=23.x+12x2+x+1+43.12∫d(x+12)(x+12)2+(32)2=2x+13(x2+x+1)+.433tan−1(2x+13).Similarly,J2=2x−13(x2−x+1)+433tan−1(2x−13)Finally,4F=−M+N−4P+4Q=12(x2+x+1)−12(x2−x+1)+52{2x+13(x2+x+1)+.433tan−1(2x+13)+[2x−13(x2−x+1)+433tan−1(2x−13)]}−2ln(x2+x+1)+2ln(x2−x+1)−43tan−1(2x+13)−43tan−1(2x−13)=10x3+2x(x2+x+1)(x2−x+1)+2lnx2−x+1x2+x+1−233[tan−1(2x−13)+tan−1(2x+13)]Itiseasytoseethat4F(0)=04F(+∞)=−233(π2+π2)=−2π33Therefore,∫0+∞2x2−1(x2+x+1)2(x2−x+1)2dx=−2π33 Commented by abdomathmax last updated on 27/Jul/20 thankyousir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-170767Next Next post: calculate-1-dx-x-2-1-2-x-2-4-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.