Menu Close

calculate-0-3pi-4-dt-1-sin-2-t-2-




Question Number 36941 by maxmathsup by imad last updated on 07/Jun/18
calculate  ∫_0 ^((3π)/4)       (dt/((1+sin^2 t)^2 ))
calculate03π4dt(1+sin2t)2
Commented by math khazana by abdo last updated on 08/Jun/18
we have cos^2 t = (1/(1+tan^2 t)) ⇒sin^2 t =1−(1/(1+tan^2 t))  = ((tan^2 t)/(1+tan^2 t)) ⇒ I = ∫_0 ^((3π)/4)    (dt/((1+((tan^2 t)/(1+tan^2 t)))^2 ))  =_(tant =−x)     ∫_0 ^1       (1/((1+(x^2 /(1+x^2 )))^2 )) .((−dx)/(1+x^2 ))  =− ∫_0 ^1       (((1+x^2 )^2 )/((1+x^2 )(1+2x^2 )^2 ))dx  =−∫_0 ^1    ((1+x^2 )/((1+2x^2 )^2 ))dx  changement x(√2) = sh(u)  give  I = −∫_0 ^(argsh((√2)))   ((1+(1/2)sh^2 u)/((ch^4 u))) (1/( (√2))) ch(u)du  =− (1/(2(√2)))  ∫_0 ^(ln((√2) +(√3)))      ((2 +sh^2 u)/(ch^3 u)) du  =−(1/(2(√2))) ∫_0 ^(ln((√2) +(√3)))   ((2 + ((ch(2u)−1)/2))/(((1+ch(2u))/2) ch(u))) du  = (1/(2(√2))) ∫_0 ^(ln((√2) +(√3)))   ((3+ch(2u))/(chu +ch(u)ch(2u))) du...  be continued...
wehavecos2t=11+tan2tsin2t=111+tan2t=tan2t1+tan2tI=03π4dt(1+tan2t1+tan2t)2=tant=x011(1+x21+x2)2.dx1+x2=01(1+x2)2(1+x2)(1+2x2)2dx=011+x2(1+2x2)2dxchangementx2=sh(u)giveI=0argsh(2)1+12sh2u(ch4u)12ch(u)du=1220ln(2+3)2+sh2uch3udu=1220ln(2+3)2+ch(2u)121+ch(2u)2ch(u)du=1220ln(2+3)3+ch(2u)chu+ch(u)ch(2u)dubecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *