Menu Close

calculate-0-3x-2-2-x-2-1-x-2-2i-2-dx-




Question Number 62805 by mathmax by abdo last updated on 25/Jun/19
calculate ∫_0 ^(+∞)   ((3x^2 −2)/((x^2 +1)( x^2 −2i)^2 )) dx
calculate0+3x22(x2+1)(x22i)2dx
Commented by mathmax by abdo last updated on 26/Jun/19
let I =∫_0 ^∞   ((3x^2 −2)/((x^2  +1)(x^2 −2i)^2 )) dx⇒2I =∫_(−∞) ^(+∞)   ((3x^2 −2)/((x^2 +1)(x^2 −2i)^2 ))dx let  w(z) =((3z^2 −2)/((z^2  +1)(z^2 −2i)^2 )) ⇒w(z) =((3z^2 −2)/((z−i)(z+i)(z−(√(2i)))^2 (z+(√(2i)))^2 ))  =((3z^2 −2)/((z−i)(z+i)(z−(√2)e^((iπ)/4) )^2 (z+(√2)e^((iπ)/4) )^2 ))  so the poles of w are +^− i and +^− (√2)e^((iπ)/4)   residus theorem give ∫_(−∞) ^(+∞)  w(z)dz =2iπ { Res(w,i)+Res(w,(√2)e^((iπ)/4) )}  Res(w,i) =lim_(z→i) (z−i)w(z) =((−5)/(2i(−1−2i)^2 )) =((−5)/(2i(2i+1)^2 )) =((−5)/(2i(−4+4i +1)))  =((−5)/(2i(−3+4i)))  Res(w,(√2)e^((iπ)/4) ) =lim_(z→(√2)e^((iπ)/4) )    (1/((2−1)!)){ (z−(√2)e^((iπ)/4) )^2 w(z)}^((1))   =lim_(z→(√2)e^((iπ)/4) )      {((3z^2 −2)/((z^2 +1)(z+(√2)e^((iπ)/4) )^2 ))}^((1))   =lim_(z→(√2)e^((iπ)/4) )     {((6z(z^2 +1)(z+(√2)e^((iπ)/4) )^2 −(3z^2 −2){2z(z+(√2)e^((iπ)/4) }^2 +2(z^2 +1)(z+(√2)e^((iπ)/4) ))/((z^2 +1)^2 (z+(√2)e^((iπ)/4) )^4 ))}  =lim_(z→(√2)e^((iπ)/4) )    {((6z(z^2  +1)(z+(√2)e^((iπ)/4) )−(3z^2 −2){2z(z+(√2)e^((iπ)/4) )+2(z^2 +1)})/((z^2  +1)^2 (z+(√2)e^((iπ)/4) )^3 ))}  ...be continued...
letI=03x22(x2+1)(x22i)2dx2I=+3x22(x2+1)(x22i)2dxletw(z)=3z22(z2+1)(z22i)2w(z)=3z22(zi)(z+i)(z2i)2(z+2i)2=3z22(zi)(z+i)(z2eiπ4)2(z+2eiπ4)2sothepolesofware+iand+2eiπ4residustheoremgive+w(z)dz=2iπ{Res(w,i)+Res(w,2eiπ4)}Res(w,i)=limzi(zi)w(z)=52i(12i)2=52i(2i+1)2=52i(4+4i+1)=52i(3+4i)Res(w,2eiπ4)=limz2eiπ41(21)!{(z2eiπ4)2w(z)}(1)=limz2eiπ4{3z22(z2+1)(z+2eiπ4)2}(1)=limz2eiπ4{6z(z2+1)(z+2eiπ4)2(3z22){2z(z+2eiπ4}2+2(z2+1)(z+2eiπ4)(z2+1)2(z+2eiπ4)4}=limz2eiπ4{6z(z2+1)(z+2eiπ4)(3z22){2z(z+2eiπ4)+2(z2+1)}(z2+1)2(z+2eiπ4)3}becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *