calculate-0-3x-2-2-x-2-1-x-2-2i-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 62805 by mathmax by abdo last updated on 25/Jun/19 calculate∫0+∞3x2−2(x2+1)(x2−2i)2dx Commented by mathmax by abdo last updated on 26/Jun/19 letI=∫0∞3x2−2(x2+1)(x2−2i)2dx⇒2I=∫−∞+∞3x2−2(x2+1)(x2−2i)2dxletw(z)=3z2−2(z2+1)(z2−2i)2⇒w(z)=3z2−2(z−i)(z+i)(z−2i)2(z+2i)2=3z2−2(z−i)(z+i)(z−2eiπ4)2(z+2eiπ4)2sothepolesofware+−iand+−2eiπ4residustheoremgive∫−∞+∞w(z)dz=2iπ{Res(w,i)+Res(w,2eiπ4)}Res(w,i)=limz→i(z−i)w(z)=−52i(−1−2i)2=−52i(2i+1)2=−52i(−4+4i+1)=−52i(−3+4i)Res(w,2eiπ4)=limz→2eiπ41(2−1)!{(z−2eiπ4)2w(z)}(1)=limz→2eiπ4{3z2−2(z2+1)(z+2eiπ4)2}(1)=limz→2eiπ4{6z(z2+1)(z+2eiπ4)2−(3z2−2){2z(z+2eiπ4}2+2(z2+1)(z+2eiπ4)(z2+1)2(z+2eiπ4)4}=limz→2eiπ4{6z(z2+1)(z+2eiπ4)−(3z2−2){2z(z+2eiπ4)+2(z2+1)}(z2+1)2(z+2eiπ4)3}…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Which-is-larger-Z-1-2-3-6-4-11-or-S-1-2-3-6-5-11-Next Next post: find-the-value-of-x-1-x-4-x-2-1-3-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.