Menu Close

calculate-0-4pi-sinx-3-cosx-2-dx-




Question Number 144214 by Mathspace last updated on 23/Jun/21
calculate ∫_0 ^(4π)   ((sinx)/((3+cosx)^2 ))dx
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{4}\pi} \:\:\frac{{sinx}}{\left(\mathrm{3}+{cosx}\right)^{\mathrm{2}} }{dx} \\ $$
Answered by bemath last updated on 23/Jun/21
=−∫_0 ^(4π)  ((d(3+cos x))/((3+cos x)^2 ))  =−[ −(1/(3+cos x)) ]_0 ^(4π)   = [(1/(3+cos 4π))]−[(1/(3+cos 0)) ] =0
$$=−\underset{\mathrm{0}} {\overset{\mathrm{4}\pi} {\int}}\:\frac{\mathrm{d}\left(\mathrm{3}+\mathrm{cos}\:\mathrm{x}\right)}{\left(\mathrm{3}+\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$=−\left[\:−\frac{\mathrm{1}}{\mathrm{3}+\mathrm{cos}\:\mathrm{x}}\:\right]_{\mathrm{0}} ^{\mathrm{4}\pi} \\ $$$$=\:\left[\frac{\mathrm{1}}{\mathrm{3}+\mathrm{cos}\:\mathrm{4}\pi}\right]−\left[\frac{\mathrm{1}}{\mathrm{3}+\mathrm{cos}\:\mathrm{0}}\:\right]\:=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *