Question Number 51552 by maxmathsup by imad last updated on 28/Dec/18
$${calculate}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx} \\ $$
Commented by Abdo msup. last updated on 29/Dec/18
$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{4}}{dx}\: \\ $$$${I}\:=_{{x}=\mathrm{2}{t}} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} \right)}{\mathrm{4}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\mathrm{2}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{1}+\mathrm{4}{t}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:{let}\:{consider} \\ $$$${f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left(\mathrm{1}+{xt}^{\mathrm{2}} \right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:\:{with}\:{x}>\mathrm{0} \\ $$$${f}^{'} \left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{t}^{\mathrm{2}} }{\left(\mathrm{1}+{x}^{\mathrm{2}} {t}^{\mathrm{4}} \right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{dt} \\ $$$$\Rightarrow\mathrm{2}{f}\left({x}\right)=\int_{−\infty} ^{+\infty} \:\:\:\frac{{t}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} {t}^{\mathrm{4}} \:+\mathrm{1}\right)\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)}{dt}\:{let} \\ $$$$\varphi\left({z}\right)=\frac{{z}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} {z}^{\mathrm{4}} \:+\mathrm{1}\right)\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)}\:\Rightarrow \\ $$$$\varphi\left({z}\right)=\:\frac{{z}^{\mathrm{2}} }{\left({xz}^{\mathrm{2}} −{i}\right)\left({xz}^{\mathrm{2}} \:+{i}\right)\left({z}−{i}\right)\left({z}+{i}\right)} \\ $$$$=\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({z}^{\mathrm{2}} −\frac{{i}}{{x}}\right)\left({z}^{\mathrm{2}} \:+\frac{{i}}{{x}}\right)\left({z}−{i}\right)\left({z}+{i}\right)} \\ $$$$=\:\frac{{z}^{\mathrm{2}} }{{x}^{\mathrm{2}} \left({z}−\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}\:+\frac{\mathrm{1}}{\:\sqrt{}{x}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}−\frac{{i}}{\:\sqrt{{x}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+\frac{{i}}{\:\sqrt{{x}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}−{i}\right)\left({z}+{i}\right)} \\ $$$${residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:{Res}\left(\varphi,\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)+{Res}\left(\varphi,−\frac{\mathrm{1}}{\:\sqrt{{x}}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:+{Res}\left(\varphi,{i}\right)\right\} \\ $$$$…{be}\:{continued}…. \\ $$