Question Number 59050 by maxmathsup by imad last updated on 04/May/19
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\: \\ $$
Answered by tanmay last updated on 04/May/19
$${x}^{\mathrm{2}} ={tana} \\ $$$$\mathrm{2}{xdx}={sec}^{\mathrm{2}} {ada} \\ $$$${dx}=\frac{{sec}^{\mathrm{2}} {ada}}{\mathrm{2}\sqrt{{tana}}\:}{da} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{a}}{\mathrm{1}+{tana}}×\frac{{sec}^{\mathrm{2}} {a}}{\mathrm{2}\sqrt{{tana}}}{da} \\ $$$$\left.\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{a}}{{cos}^{\mathrm{2}} {a}\left(\right.}×\frac{{cosa}}{{sina}+{cosa}}\right)×\frac{\sqrt{{cosa}}}{\mathrm{2}\sqrt{{sina}}}{da} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ada}}{\mathrm{2}\sqrt{{sinacosa}}}×\frac{\mathrm{1}}{\left({sina}+{cosa}\right)} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ada}}{\:\sqrt{{sin}\mathrm{2}{a}}\:×\left({sina}+{cosa}\right)}={I} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\frac{\pi}{\mathrm{2}}−{a}\right)}{\:\sqrt{{sin}\mathrm{2}\left(\frac{\pi}{\mathrm{2}}−{a}\right)}\:×\left({sin}\left(\frac{\pi}{\mathrm{2}}−{a}\right)+{cos}\left(\frac{\pi}{\mathrm{2}}−{a}\right)\right.}{da} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\left(\frac{\pi}{\mathrm{2}}−{a}\right)}{\:\sqrt{{sin}\mathrm{2}{a}}\:×\left({cosa}+{sina}\right)}{da} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\frac{\pi}{\mathrm{2}}}{\:\sqrt{{sin}\mathrm{2}{a}}\:×\left({sina}+{cosa}\right)} \\ $$$$\frac{\mathrm{4}{I}}{\pi}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{da}}{\:\sqrt{{sin}\mathrm{2}{a}}\:×\sqrt{\mathrm{1}+{sin}\mathrm{2}{a}}} \\ $$$${t}={tana}\:\rightarrow{dt}={sec}^{\mathrm{2}} {ada}\rightarrow{da}=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{4}{I}}{\pi}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\:\sqrt{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}}×\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{4}{I}}{\pi}=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\:\sqrt{\mathrm{2}{t}}\:×\left(\mathrm{1}+{t}\right)} \\ $$$$\frac{\mathrm{4}\sqrt{\mathrm{2}}\:{I}}{\pi}=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\:\sqrt{{t}}\:\left(\mathrm{1}+{t}\right)} \\ $$$${k}^{\mathrm{2}} ={t}\rightarrow{dt}=\mathrm{2}{kdk} \\ $$$$\frac{\mathrm{4}\sqrt{\mathrm{2}}\:{I}}{\pi}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}{kdk}}{{k}\left(\mathrm{1}+{k}^{\mathrm{2}} \right)} \\ $$$$\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\pi}×{I}=\int_{\mathrm{0}} ^{\infty} \frac{{dk}}{\mathrm{1}+{k}^{\mathrm{2}} } \\ $$$$\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\pi}×{I}=\mid{tan}^{−\mathrm{1}} {k}\mid_{\mathrm{0}} ^{\infty} \\ $$$${I}=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}×\frac{\pi}{\mathrm{2}}\rightarrow\boldsymbol{{I}}=\frac{\pi^{\mathrm{2}} }{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$$$ \\ $$