Menu Close

calculate-0-arctan-x-2-1-x-2-dx-




Question Number 59050 by maxmathsup by imad last updated on 04/May/19
calculate ∫_0 ^∞    ((arctan(x^2 ))/(1+x^2 )) dx
calculate0arctan(x2)1+x2dx
Answered by tanmay last updated on 04/May/19
x^2 =tana  2xdx=sec^2 ada  dx=((sec^2 ada)/(2(√(tana)) ))da  ∫_0 ^(π/2) (a/(1+tana))×((sec^2 a)/(2(√(tana))))da  ∫_0 ^(π/2) (a/(cos^2 a())×((cosa)/(sina+cosa)))×((√(cosa))/(2(√(sina))))da  ∫_0 ^(π/2) ((ada)/(2(√(sinacosa))))×(1/((sina+cosa)))  ∫_0 ^(π/2) ((ada)/( (√(sin2a)) ×(sina+cosa)))=I  I=∫_0 ^(π/2) ((((π/2)−a))/( (√(sin2((π/2)−a))) ×(sin((π/2)−a)+cos((π/2)−a)))da  I=∫_0 ^(π/2) ((((π/2)−a))/( (√(sin2a)) ×(cosa+sina)))da  2I=∫_0 ^(π/2) ((π/2)/( (√(sin2a)) ×(sina+cosa)))  ((4I)/π)=∫_0 ^(π/2) (da/( (√(sin2a)) ×(√(1+sin2a))))  t=tana →dt=sec^2 ada→da=(dt/(1+t^2 ))  ((4I)/π)=∫_0 ^∞ (1/( (√((2t)/(1+t^2 )))))×(1/( (√(1+((2t)/(1+t^2 ))))))×(dt/(1+t^2 ))  ((4I)/π)=∫_0 ^∞ (dt/( (√(2t)) ×(1+t)))  ((4(√2) I)/π)=∫_0 ^∞ (dt/( (√t) (1+t)))  k^2 =t→dt=2kdk  ((4(√2) I)/π)=∫_0 ^∞ ((2kdk)/(k(1+k^2 )))  ((2(√2))/π)×I=∫_0 ^∞ (dk/(1+k^2 ))  ((2(√2))/π)×I=∣tan^(−1) k∣_0 ^∞   I=(π/(2(√2)))×(π/2)→I=(π^2 /(4(√2)))
x2=tana2xdx=sec2adadx=sec2ada2tanada0π2a1+tana×sec2a2tanada0π2acos2a(×cosasina+cosa)×cosa2sinada0π2ada2sinacosa×1(sina+cosa)0π2adasin2a×(sina+cosa)=II=0π2(π2a)sin2(π2a)×(sin(π2a)+cos(π2a)daI=0π2(π2a)sin2a×(cosa+sina)da2I=0π2π2sin2a×(sina+cosa)4Iπ=0π2dasin2a×1+sin2at=tanadt=sec2adada=dt1+t24Iπ=012t1+t2×11+2t1+t2×dt1+t24Iπ=0dt2t×(1+t)42Iπ=0dtt(1+t)k2=tdt=2kdk42Iπ=02kdkk(1+k2)22π×I=0dk1+k222π×I=∣tan1k0I=π22×π2I=π242

Leave a Reply

Your email address will not be published. Required fields are marked *