Menu Close

calculate-0-cos-2x-dx-x-2-1-2x-2-3-




Question Number 33735 by prof Abdo imad last updated on 22/Apr/18
calculate  ∫_0 ^∞       ((cos(2x)dx)/((x^2 +1)( 2x^2  +3))) .
calculate0cos(2x)dx(x2+1)(2x2+3).
Commented by prof Abdo imad last updated on 25/Apr/18
let put I = ∫_0 ^∞     ((cos(2x))/((x^2 +1)(2x^2 +3)))dx  2I = ∫_(−∞) ^(+∞)    ((cos(2x))/((x^2 +1)(2x^2 +3)))dx  =Re( ∫_(−∞) ^(+∞)   (e^(i2x) /((x^2 +1)(2x^2 +3)))dx) let consider the  complex function ϕ(z)= (e^(i2z) /((z^2 +1)(2z^2 +3)))  ϕ(z) = (e^(i2z) /(2(z^2 +1)(z^2 +(3/2)))) =  (e^(i2z) /(2(z−i)(z+i)(z−i(√((3/2))(z +i((√3)/2))))))  so the poles of ϕ are i,−i,i(√(3/2)) ,−i(√(3/2))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (Res(ϕ,i) +Res(ϕ,i(√(3/2)) ))  Res(ϕ,i) =   (e^(−2) /(2(2i)(−1+(3/2)))) = (e^(−2) /(4i.(1/2))) = (e^(−2) /(2i))  Res(ϕ,i(√(3/2))) =  (e^(−2(√(3/2))) /(2(−(3/2)+1)(2i(√(3/2)))))  =    (e^(−(√6)) /(−2i((√3)/( (√2))))) =−(e^(−(√6)) /(i(√6))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ(  (e^(−2) /(2i)) −(e^(−(√6)) /(i(√6))))  = π e^(−2)  −((2π)/( (√6))) e^(−(√6))      ⇒    I = (π/2) e^(−2)   −(π/( (√6))) e^(−(√6))  .
letputI=0cos(2x)(x2+1)(2x2+3)dx2I=+cos(2x)(x2+1)(2x2+3)dx=Re(+ei2x(x2+1)(2x2+3)dx)letconsiderthecomplexfunctionφ(z)=ei2z(z2+1)(2z2+3)φ(z)=ei2z2(z2+1)(z2+32)=ei2z2(zi)(z+i)(zi32)(z+i32)sothepolesofφarei,i,i32,i32+φ(z)dz=2iπ(Res(φ,i)+Res(φ,i32))Res(φ,i)=e22(2i)(1+32)=e24i.12=e22iRes(φ,i32)=e2322(32+1)(2i32)=e62i32=e6i6+φ(z)dz=2iπ(e22ie6i6)=πe22π6e6I=π2e2π6e6.

Leave a Reply

Your email address will not be published. Required fields are marked *