Menu Close

calculate-0-cos-2x-x-2-1-2-x-2-4-dx-




Question Number 145745 by mathmax by abdo last updated on 07/Jul/21
calculate ∫_0 ^∞  ((cos(2x))/((x^2  +1)^2 (x^2  +4)))dx
calculate0cos(2x)(x2+1)2(x2+4)dx
Answered by mathmax by abdo last updated on 11/Jul/21
Ψ=∫_0 ^∞  ((cos(2x))/((x^2  +1)^2 (x^2 /+4)))dx ⇒2Ψ=Re(∫_(−∞) ^(+∞)  (e^(2ix) /((x^2  +1)^2 (x^2 +4)))dx)  ϕ(z)=(e^(2iz) /((z^2  +1)^2 (z^2  +4)))⇒ϕ(z)=(e^(2iz) /((z−i)^2 (z+i)^2 (z−2i)(z+2i)))  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ{Res(ϕ,i) +Res(ϕ,2i)}  Res(ϕ,i)=lim_(z→i)   (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    {(e^(2iz) /((z+i)^2 (z^2  +4)))}^((1))   =lim_(z→i)    ((2ie^(2iz) (z+i)^2 (z^2  +4)−(2(z+i)(z^2  +4)+2z(z+i)^2 )e^(2iz) )/((z+i)^4 (z^2  +4)^2 ))  =((2ie^(−2) (−4)(3)−(4i(3)+2i(−4))e^(−2) )/((−4)^2 .3^2 ))  =((−24e^(−2) −4ie^(−2) )/(16.9))  Res(ϕ,2i)=lim_(z→2i)  (z−2i)ϕ(z)=lim_(z→2i) (e^(−4) /(4i(−3)^2 ))=(e^(−4) /(36i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{((−24e^(−2) −4ie^(−2) )/(144)) +(e^(−4) /(36i))}  =2iπ(−((24)/(144))e^(−2) )+((8π)/(144))e^(−2)  +(π/(18))e^(−4)   2Ψ=Re(....) ⇒2Ψ=((4π)/(72))e^(−2)  +(π/(18))e^(−4)  ⇒  Ψ=(π/(36))e^(−2)  +(π/(36))e^(−4)
Ψ=0cos(2x)(x2+1)2(x2/+4)dx2Ψ=Re(+e2ix(x2+1)2(x2+4)dx)φ(z)=e2iz(z2+1)2(z2+4)φ(z)=e2iz(zi)2(z+i)2(z2i)(z+2i)+φ(z)dz=2iπ{Res(φ,i)+Res(φ,2i)}Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{e2iz(z+i)2(z2+4)}(1)=limzi2ie2iz(z+i)2(z2+4)(2(z+i)(z2+4)+2z(z+i)2)e2iz(z+i)4(z2+4)2=2ie2(4)(3)(4i(3)+2i(4))e2(4)2.32=24e24ie216.9Res(φ,2i)=limz2i(z2i)φ(z)=limz2ie44i(3)2=e436i+φ(z)dz=2iπ{24e24ie2144+e436i}=2iπ(24144e2)+8π144e2+π18e42Ψ=Re(.)2Ψ=4π72e2+π18e4Ψ=π36e2+π36e4

Leave a Reply

Your email address will not be published. Required fields are marked *