Menu Close

calculate-0-cos-abx-x-2-ax-1-x-2-bx-1-with-a-and-b-real-and-a-lt-2-b-lt-2-




Question Number 130387 by Bird last updated on 25/Jan/21
calculate ∫_0 ^∞  ((cos(abx))/((x^2 +ax+1)(x^2 +bx+1)))  with a and b real and ∣a∣<2,∣b∣<2
calculate0cos(abx)(x2+ax+1)(x2+bx+1)withaandbrealanda∣<2,b∣<2
Commented by mathmax by abdo last updated on 25/Jan/21
the q.is ∫_0 ^∞  ((cos(abx))/((x^2  +ax+1)(x^2  +bx+1)))dx
theq.is0cos(abx)(x2+ax+1)(x2+bx+1)dx
Commented by mathmax by abdo last updated on 25/Jan/21
I=∫_0 ^∞  ((cos(abx))/((x^2  +ax+1)(x^2  +bx+1)))dx ⇒  2I=∫_(−∞) ^(+∞)   ((cos(abx))/((x^2  +ax+1)(x^2  +bx+1)))dx =Re(∫_(−∞) ^(+∞)  (e^(iabx) /((x^2  +ax+1)(x^2  +bx+1)))dx)  let ϕ(z)=(e^(iabz) /((z^2 +az+1)(z^2 +bz +1))) poles ofϕ?  z^2 +az +1=0 →Δ=a^2 −4<0 ⇒z_1 =((−a+i(√(4−a^2 )))/2) and  z_2 =((−a−i(√(4−a^2 )))/2)  also the roots of x^2  +bx+1 are  t_1 =((−b+i(√(4−b^2 )))/2) and t_2 =((−b−i(√(4−b^2 )))/2) ⇒  ϕ(z)=(e^(iabz) /((z−z_1 )(z−z_2 )(z−t_1 )(z−t_2 ))) residus theorem give  ∫_R ϕ(z)dz =2iπ{Res(ϕ,z_1 )+Res(ϕ,t_1 )}  Res(ϕ,z_1 ) =(e^(iabz_1 ) /((z_1 −z_2 )(z_1 −t_1 )(z_1 −t_2 )))  =(e^(iabz_1 ) /(−i(√(4−a^2 ))(z_1 ^2  +bz_1 +1)))=....  Res(ϕ,z_2 )=(e^(iabz_2 ) /((z_2 −z_1 )(z_2 ^2  +bz_2 +1)))=....  rest to collect the results....
I=0cos(abx)(x2+ax+1)(x2+bx+1)dx2I=+cos(abx)(x2+ax+1)(x2+bx+1)dx=Re(+eiabx(x2+ax+1)(x2+bx+1)dx)letφ(z)=eiabz(z2+az+1)(z2+bz+1)polesofφ?z2+az+1=0Δ=a24<0z1=a+i4a22andz2=ai4a22alsotherootsofx2+bx+1aret1=b+i4b22andt2=bi4b22φ(z)=eiabz(zz1)(zz2)(zt1)(zt2)residustheoremgiveRφ(z)dz=2iπ{Res(φ,z1)+Res(φ,t1)}Res(φ,z1)=eiabz1(z1z2)(z1t1)(z1t2)=eiabz1i4a2(z12+bz1+1)=.Res(φ,z2)=eiabz2(z2z1)(z22+bz2+1)=.resttocollecttheresults.

Leave a Reply

Your email address will not be published. Required fields are marked *