Menu Close

calculate-0-cosx-x-2-1-x-2-2-x-2-3-dx-




Question Number 146898 by mathmax by abdo last updated on 16/Jul/21
calculate ∫_0 ^∞    ((cosx)/((x^2  +1)(x^2 +2)(x^2  +3)))dx
calculate0cosx(x2+1)(x2+2)(x2+3)dx
Answered by qaz last updated on 16/Jul/21
L(∫_0 ^∞ ((cos (tx))/(x^2 +a^2 ))dx)(s).........(a>0)  =∫_0 ^∞ (s/((x^2 +a^2 )(s^2 +x^2 )))dx  =(s/(s^2 −a^2 ))∫_0 ^∞ ((1/(x^2 +a^2 ))−(1/(s^2 +x^2 )))dx  =(s/(s^2 −a^2 ))((1/a)tan^(−1) (x/a)−(1/s)tan^(−1) (x/s))∣_0 ^∞   =(π/(2a(s+a)))  ∫_0 ^∞ ((cos x)/(x^2 +a^2 ))dx=L^(−1) ((π/(2a(s+a))))(t=1)=(π/(2a))e^(−at) ∣_(t=1) =(π/(2a))e^(−a)   ∫_0 ^∞ ((cos x)/((x^2 +1)(x^2 +2)(x^2 +3)))dx  =∫_0 ^∞ (((cos x)/(2(x^2 +1)))−((cos x)/(x^2 +2))+((cos x)/(2(x^2 +3))))dx  =(π/4)e^(−1) −(π/(2(√2)))e^(−(√2)) +(π/( 4(√3)))e^(−(√3))
L(0cos(tx)x2+a2dx)(s)(a>0)=0s(x2+a2)(s2+x2)dx=ss2a20(1x2+a21s2+x2)dx=ss2a2(1atan1xa1stan1xs)0=π2a(s+a)0cosxx2+a2dx=L1(π2a(s+a))(t=1)=π2aeatt=1=π2aea0cosx(x2+1)(x2+2)(x2+3)dx=0(cosx2(x2+1)cosxx2+2+cosx2(x2+3))dx=π4e1π22e2+π43e3
Commented by mathmax by abdo last updated on 16/Jul/21
thank sir answer correct..
thanksiranswercorrect..
Answered by mathmax by abdo last updated on 16/Jul/21
Υ=∫_0 ^∞  ((cosx)/((x^2 +1)(x^2 +2)(x^2  +3)))dx ⇒2Υ=Re(∫_(−∞) ^(+∞)  (e^(ix) /((x^2  +1)(x^2 +2)(x^2  +3))))  let Λ(z)=(e^(iz) /((z^2  +1)(z^2  +2)(z^2  +3))) ⇒Λ(z)=(e^(iz) /((z−i)(z+i)(z−(√2)i)(z+(√2)i)(z−i(√3))(z+i(√3))))  ∫_R Λ(z)dz=2iπ {Res(Λ,i)+Res(Λ,i(√2))+Res(Λ,i(√3))}  Res(Λ,i)=(e^(−1) /((2i)(−1+2)(−1+3)))=(e^(−1) /(4i))  Res(Λ,i(√2)) =(e^(−(√2)) /((2(√2))i(−2+1)(−2+3))) =−(e^(−(√2)) /(2(√2)i))  Res(Λ,i(√3)) =(e^(−(√3)) /((2i(√3))(−3+1)(−3+2)))=(e^(−(√3)) /(4i(√3))) ⇒  ∫_R Λ(z)dz=2iπ{(e^(−1) /(4i))−(e^(−(√2)) /(2(√2)i))+(e^(−(√3)) /(4i(√3)))}  =(π/2)e^(−1) −(π/( (√2)))e^(−(√2))    +(π/(2(√3)))e^(−(√3))   ⇒  Υ=(π/4)e^(−1)  −(π/(2(√2)))e^(−(√2))   +(π/(4(√3)))e^(−(√3))
Υ=0cosx(x2+1)(x2+2)(x2+3)dx2Υ=Re(+eix(x2+1)(x2+2)(x2+3))letΛ(z)=eiz(z2+1)(z2+2)(z2+3)Λ(z)=eiz(zi)(z+i)(z2i)(z+2i)(zi3)(z+i3)RΛ(z)dz=2iπ{Res(Λ,i)+Res(Λ,i2)+Res(Λ,i3)}Res(Λ,i)=e1(2i)(1+2)(1+3)=e14iRes(Λ,i2)=e2(22)i(2+1)(2+3)=e222iRes(Λ,i3)=e3(2i3)(3+1)(3+2)=e34i3RΛ(z)dz=2iπ{e14ie222i+e34i3}=π2e1π2e2+π23e3Υ=π4e1π22e2+π43e3

Leave a Reply

Your email address will not be published. Required fields are marked *