Question Number 39165 by math khazana by abdo last updated on 03/Jul/18

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18

Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18

Commented by math khazana by abdo last updated on 04/Jul/18
![let I =∫_0 ^∞ (dt/(1+t^4 +t^6 )) 2I = ∫_(−∞) ^(+∞) (dt/(1+t^4 +t^6 )) let ϕ(z)= (1/(1+z^4 +z^8 )) poles of ϕ? 1+z^4 +z^8 =0 ⇔ 1+z^4 +(z^4 )^2 =0 ⇔ ((1−(z^4 )^3 )/(1−z^4 )) =0 and z^4 ≠1 ⇔ z^(12) =1 and z^4 ≠1 z^4 =1 ⇒4θ=2kπ ⇒θ_k =((kπ)/2) and k∈[[0,3]] z_k =e^(i((kπ)/2)) let z=re^(iα) so z^(12) =1 ⇒r=1 and 12α =2kπ ⇒ α_k =((kπ)/6) with k∈[[0,11]]⇒ z_k =e^(i((kπ)/6)) and k∈[[0,5]] z_0 =1 (non pole of ϕ) z_1 =e^(i(π/6)) z_1 ^4 =e^(i((2π)/3)) ≠1 ⇒z_1 pole of ϕ z_2 =e^(i(π/3)) (z_2 ^4 ≠1 ⇒z_2 pole of ϕ) z_3 =e^(i(π/2)) (z_3 ^4 =1 so z_3 non pole of ϕ) z_4 =e^(i((2π)/3)) ( z_4 ^4 ≠1 so z_4 pole of ϕ) z_5 =e^(i ((5π)/6)) (z_5 ^4 ≠1 so z_5 is pole of ϕ) z_6 = e^(iπ) ( z_6 ^4 =1 non pole of ϕ) z_7 =e^(i((7π)/6)) =−e^(i(π/6)) (pole of ϕ) z_8 =e^(i((8π)/6)) = e^(i((4π)/3)) (pole of ϕ) z_9 =e^(i((9π)/6)) =e^(i((3π)/2)) (non pole of ϕ) z_(10) =e^(i((10π)/6)) = e^(i((5π)/3)) (pole ofϕ) z_(11) = e^(i((11π)/6)) =−e^(−i(π/6)) (pole of ϕ) be continued...](https://www.tinkutara.com/question/Q39294.png)
Commented by math khazana by abdo last updated on 04/Jul/18
