Menu Close

calculate-0-dt-1-t-4-t-6-




Question Number 39165 by math khazana by abdo last updated on 03/Jul/18
calculate  ∫_0 ^∞     (dt/(1+t^(4 )  +t^6 ))
calculate0dt1+t4+t6
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
    1.5×1>∫_0 ^∞ (dt/(1+t^4 +t^6 ))>3×(0.5)^2   1.5>∫_0 ^∞ (dt/(1+t^4 +t^6 ))>0.75
1.5×1>0dt1+t4+t6>3×(0.5)21.5>0dt1+t4+t6>0.75
Commented by math khazana by abdo last updated on 04/Jul/18
let  I =∫_0 ^∞      (dt/(1+t^4  +t^6 ))  2I  = ∫_(−∞) ^(+∞)     (dt/(1+t^4  +t^6 )) let ϕ(z)= (1/(1+z^4  +z^8 ))  poles of ϕ?  1+z^4  +z^8  =0 ⇔ 1+z^4  +(z^4 )^2 =0   ⇔ ((1−(z^4 )^3 )/(1−z^4 )) =0  and z^4 ≠1 ⇔ z^(12)  =1 and z^4 ≠1  z^4 =1 ⇒4θ=2kπ ⇒θ_k =((kπ)/2)  and k∈[[0,3]]  z_k =e^(i((kπ)/2))    let  z=re^(iα)    so z^(12) =1 ⇒r=1 and  12α =2kπ ⇒ α_k =((kπ)/6)  with k∈[[0,11]]⇒  z_k =e^(i((kπ)/6))    and k∈[[0,5]]  z_0 =1 (non pole of ϕ)  z_1 =e^(i(π/6))     z_1 ^4  =e^(i((2π)/3))   ≠1 ⇒z_1 pole of ϕ  z_2 =e^(i(π/3))     (z_2 ^4  ≠1 ⇒z_2 pole of ϕ)  z_3 =e^(i(π/2))  (z_3 ^4 =1 so z_3  non pole of ϕ)  z_4  =e^(i((2π)/3))  ( z_4 ^4  ≠1 so z_4 pole of ϕ)  z_5  =e^(i ((5π)/6))    (z_5 ^4 ≠1 so z_5 is pole of ϕ)  z_6  = e^(iπ) ( z_6 ^4  =1 non pole of ϕ)  z_7 =e^(i((7π)/6))  =−e^(i(π/6))   (pole of ϕ)  z_8 =e^(i((8π)/6))  = e^(i((4π)/3))    (pole of ϕ)  z_9 =e^(i((9π)/6))  =e^(i((3π)/2))  (non pole of ϕ)  z_(10) =e^(i((10π)/6))  = e^(i((5π)/3)) (pole ofϕ)  z_(11) = e^(i((11π)/6))  =−e^(−i(π/6))   (pole of ϕ)  be continued...
letI=0dt1+t4+t62I=+dt1+t4+t6letφ(z)=11+z4+z8polesofφ?1+z4+z8=01+z4+(z4)2=01(z4)31z4=0andz41z12=1andz41z4=14θ=2kπθk=kπ2andk[[0,3]]zk=eikπ2letz=reiαsoz12=1r=1and12α=2kπαk=kπ6withk[[0,11]]zk=eikπ6andk[[0,5]]z0=1(nonpoleofφ)z1=eiπ6z14=ei2π31z1poleofφz2=eiπ3(z241z2poleofφ)z3=eiπ2(z34=1soz3nonpoleofφ)z4=ei2π3(z441soz4poleofφ)z5=ei5π6(z541soz5ispoleofφ)z6=eiπ(z64=1nonpoleofφ)z7=ei7π6=eiπ6(poleofφ)z8=ei8π6=ei4π3(poleofφ)z9=ei9π6=ei3π2(nonpoleofφ)z10=ei10π6=ei5π3(poleofφ)z11=ei11π6=eiπ6(poleofφ)becontinued
Commented by math khazana by abdo last updated on 04/Jul/18
∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,z_1 ) +Res(ϕ,z_2 ) +Res(ϕ,z_4 )   +Res(ϕ,z_5 ) +Res(ϕ, z_7 ) +Res(ϕ^� ,z_8 ) +Res(ϕ,z_(10) )  +Res(ϕ,z_(11) ) }  Res(ϕ,z_k ) =  (1/(4z_k ^3  + 6z_k ^5 )) ⇒  Res(ϕ,z_1 )  = (1/(4(e^(i(π/6)) )^3  +6(e^((iπ)/6) )^5 ))  = (1/(4i +6 e^((i5π)/6) ))  Res(ϕ,z_2 ) =   (1/(4(e^((iπ)/3) )^3  +6 (e^((iπ)/3) )^5 )) = (1/(−4 +6 e^((i5π)/3) ))  Res(ϕ,z_4 )= (1/(4(e^((i2π)/3) )^3  +6(e^((i2π)/3) )^5 )) =(1/(4 +6 e^((i10π)/3) ))  =....
+φ(z)dz=2iπ{Res(φ,z1)+Res(φ,z2)+Res(φ,z4)+Res(φ,z5)+Res(φ,z7)+Res(φ¯,z8)+Res(φ,z10)+Res(φ,z11)}Res(φ,zk)=14zk3+6zk5Res(φ,z1)=14(eiπ6)3+6(eiπ6)5=14i+6ei5π6Res(φ,z2)=14(eiπ3)3+6(eiπ3)5=14+6ei5π3Res(φ,z4)=14(ei2π3)3+6(ei2π3)5=14+6ei10π3=.

Leave a Reply

Your email address will not be published. Required fields are marked *