Question Number 39165 by math khazana by abdo last updated on 03/Jul/18
$${calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}\:} \:+{t}^{\mathrm{6}} } \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
$$\:\:\:\:\mathrm{1}.\mathrm{5}×\mathrm{1}>\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} +{t}^{\mathrm{6}} }>\mathrm{3}×\left(\mathrm{0}.\mathrm{5}\right)^{\mathrm{2}} \\ $$$$\mathrm{1}.\mathrm{5}>\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} +{t}^{\mathrm{6}} }>\mathrm{0}.\mathrm{75} \\ $$$$ \\ $$
Commented by math khazana by abdo last updated on 04/Jul/18
$${let}\:\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} \:+{t}^{\mathrm{6}} } \\ $$$$\mathrm{2}{I}\:\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{4}} \:+{t}^{\mathrm{6}} }\:{let}\:\varphi\left({z}\right)=\:\frac{\mathrm{1}}{\mathrm{1}+{z}^{\mathrm{4}} \:+{z}^{\mathrm{8}} } \\ $$$${poles}\:{of}\:\varphi? \\ $$$$\mathrm{1}+{z}^{\mathrm{4}} \:+{z}^{\mathrm{8}} \:=\mathrm{0}\:\Leftrightarrow\:\mathrm{1}+{z}^{\mathrm{4}} \:+\left({z}^{\mathrm{4}} \right)^{\mathrm{2}} =\mathrm{0}\: \\ $$$$\Leftrightarrow\:\frac{\mathrm{1}−\left({z}^{\mathrm{4}} \right)^{\mathrm{3}} }{\mathrm{1}−{z}^{\mathrm{4}} }\:=\mathrm{0}\:\:{and}\:{z}^{\mathrm{4}} \neq\mathrm{1}\:\Leftrightarrow\:{z}^{\mathrm{12}} \:=\mathrm{1}\:{and}\:{z}^{\mathrm{4}} \neq\mathrm{1} \\ $$$${z}^{\mathrm{4}} =\mathrm{1}\:\Rightarrow\mathrm{4}\theta=\mathrm{2}{k}\pi\:\Rightarrow\theta_{{k}} =\frac{{k}\pi}{\mathrm{2}}\:\:{and}\:{k}\in\left[\left[\mathrm{0},\mathrm{3}\right]\right] \\ $$$${z}_{{k}} ={e}^{{i}\frac{{k}\pi}{\mathrm{2}}} \:\:\:{let}\:\:{z}={re}^{{i}\alpha} \:\:\:{so}\:{z}^{\mathrm{12}} =\mathrm{1}\:\Rightarrow{r}=\mathrm{1}\:{and} \\ $$$$\mathrm{12}\alpha\:=\mathrm{2}{k}\pi\:\Rightarrow\:\alpha_{{k}} =\frac{{k}\pi}{\mathrm{6}}\:\:{with}\:{k}\in\left[\left[\mathrm{0},\mathrm{11}\right]\right]\Rightarrow \\ $$$${z}_{{k}} ={e}^{{i}\frac{{k}\pi}{\mathrm{6}}} \:\:\:{and}\:{k}\in\left[\left[\mathrm{0},\mathrm{5}\right]\right] \\ $$$${z}_{\mathrm{0}} =\mathrm{1}\:\left({non}\:{pole}\:{of}\:\varphi\right) \\ $$$${z}_{\mathrm{1}} ={e}^{{i}\frac{\pi}{\mathrm{6}}} \:\:\:\:{z}_{\mathrm{1}} ^{\mathrm{4}} \:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\neq\mathrm{1}\:\Rightarrow{z}_{\mathrm{1}} {pole}\:{of}\:\varphi \\ $$$${z}_{\mathrm{2}} ={e}^{{i}\frac{\pi}{\mathrm{3}}} \:\:\:\:\left({z}_{\mathrm{2}} ^{\mathrm{4}} \:\neq\mathrm{1}\:\Rightarrow{z}_{\mathrm{2}} {pole}\:{of}\:\varphi\right) \\ $$$${z}_{\mathrm{3}} ={e}^{{i}\frac{\pi}{\mathrm{2}}} \:\left({z}_{\mathrm{3}} ^{\mathrm{4}} =\mathrm{1}\:{so}\:{z}_{\mathrm{3}} \:{non}\:{pole}\:{of}\:\varphi\right) \\ $$$${z}_{\mathrm{4}} \:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\left(\:{z}_{\mathrm{4}} ^{\mathrm{4}} \:\neq\mathrm{1}\:{so}\:{z}_{\mathrm{4}} {pole}\:{of}\:\varphi\right) \\ $$$${z}_{\mathrm{5}} \:={e}^{{i}\:\frac{\mathrm{5}\pi}{\mathrm{6}}} \:\:\:\left({z}_{\mathrm{5}} ^{\mathrm{4}} \neq\mathrm{1}\:{so}\:{z}_{\mathrm{5}} {is}\:{pole}\:{of}\:\varphi\right) \\ $$$${z}_{\mathrm{6}} \:=\:{e}^{{i}\pi} \left(\:{z}_{\mathrm{6}} ^{\mathrm{4}} \:=\mathrm{1}\:{non}\:{pole}\:{of}\:\varphi\right) \\ $$$${z}_{\mathrm{7}} ={e}^{{i}\frac{\mathrm{7}\pi}{\mathrm{6}}} \:=−{e}^{{i}\frac{\pi}{\mathrm{6}}} \:\:\left({pole}\:{of}\:\varphi\right) \\ $$$${z}_{\mathrm{8}} ={e}^{{i}\frac{\mathrm{8}\pi}{\mathrm{6}}} \:=\:{e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} \:\:\:\left({pole}\:{of}\:\varphi\right) \\ $$$${z}_{\mathrm{9}} ={e}^{{i}\frac{\mathrm{9}\pi}{\mathrm{6}}} \:={e}^{{i}\frac{\mathrm{3}\pi}{\mathrm{2}}} \:\left({non}\:{pole}\:{of}\:\varphi\right) \\ $$$${z}_{\mathrm{10}} ={e}^{{i}\frac{\mathrm{10}\pi}{\mathrm{6}}} \:=\:{e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{3}}} \left({pole}\:{of}\varphi\right) \\ $$$${z}_{\mathrm{11}} =\:{e}^{{i}\frac{\mathrm{11}\pi}{\mathrm{6}}} \:=−{e}^{−{i}\frac{\pi}{\mathrm{6}}} \:\:\left({pole}\:{of}\:\varphi\right)\:\:{be}\:{continued}… \\ $$$$ \\ $$
Commented by math khazana by abdo last updated on 04/Jul/18